Paleoecological Inferences for Turborotalita Nikolasi (Koutsoukos, 2014) Based on Stable Carbon and Oxygen Isotopes

The species Turborotalita nikolasi first appeared immediately after the Cretaceous-Paleogene (K-Pg) boundary and is considered the progenitor of all Cenozoic normal perforate species. We present δ18O and δ13C isotope signals of T. nikolasi specimens and compare them with those of mixed-layer (Guembelina cretacea), thermocline (Subbotina trivialis and Chiloguembelina midwayensis), and deep water (Nuttalides truempyi) species with glassy shell preservation from São Paulo Plateau [Deep Sea Drilling Project (DSDP) Site 356]. Turborotalita nikolasi δ18O values are similar to those of G. cretacea, suggesting that both species cohabited the mixed layer. Values of δ13C for T. nikolasi are higher than those of all other planktic foraminiferal species, which may have been due to the presence of photosymbionts, and thus might represent the earliest known record of photosymbiosis for Cenozoic planktic foraminifera. Nuttalides truempyi δ13C values are remarkably high at Site 356, indicating low 12C abundance in deep waters, which could be related to reduced inefficiency of the biological pump in transporting 12C to the bottom of the ocean after the K-Pg boundary during the first ∼300 kyr of the Danian.

[1]  D. Kroon,et al.  Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity , 2021, Proceedings of the Royal Society B.

[2]  H. Kuhnert,et al.  Development and characterization of a new in-house reference material for stable carbon and oxygen isotopes analyses , 2021 .

[3]  M. Petrizzo,et al.  Planktonic Foraminiferal Endemism at Southern High Latitudes Following the Terminal Cretaceous Extinction , 2020 .

[4]  T. Garlan,et al.  Population dynamics of modern planktonic foraminifera in the western Barents Sea , 2019, Biogeosciences.

[5]  A. Bornemann,et al.  Paleoceanographic changes across the Latest Danian Event in the South Atlantic Ocean and planktic foraminiferal response , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[6]  I. Arenillas,et al.  Blooms of aberrant planktic foraminifera across the K/Pg boundary in the Western Tethys: causes and evolutionary implications , 2018, Paleobiology.

[7]  G. Fauth,et al.  Paleocene planktonic foraminifera from DSDP Site 356, South Atlantic: Paleoceanographic inferences , 2017 .

[8]  P. Pearson,et al.  Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary , 2016 .

[9]  A. Bornemann,et al.  The Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean) , 2015, PloS one.

[10]  G. Fauth,et al.  LATE CRETACEOUS-EARLY PALEOGENE (TURONIAN? TO EARLY DANIAN) PLANKTIC FORAMINIFERA FROM DSDP SITE 356: A BIOSTRATIGRAPHIC REAPPRAISAL , 2014 .

[11]  E. Koutsoukos PHENOTYPIC PLASTICITY, SPECIATION, AND PHYLOGENY IN EARLY DANIAN PLANKTIC FORAMINIFERA , 2014 .

[12]  P. Pearson,et al.  Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat and symbiosis , 2012, Paleobiology.

[13]  Bridget S. Wade,et al.  A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data , 2011, Biological reviews of the Cambridge Philosophical Society.

[14]  P. Pearson,et al.  TAXONOMY AND STABLE ISOTOPE PALEOECOLOGY OF WELL-PRESERVED PLANKTONIC FORAMINIFERA FROM THE UPPERMOST OLIGOCENE OF TRINIDAD , 2009 .

[15]  M. Kučera,et al.  Using the Multiple Analysis Approach to Reconstruct Phylogenetic Relationships among Planktonic Foraminifera from Highly Divergent and Length-polymorphic SSU rDNA Sequences , 2009, Bioinformatics and biology insights.

[16]  J. Zachos,et al.  Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction , 2006 .

[17]  F. Quillévéré,et al.  REVISED PALEOGENE PLANKTONIC FORAMINIFERAL BIOZONATION FOR THE AUSTRAL REALM , 2005 .

[18]  P. Pearson,et al.  Atlas of eocene planktonic foraminifera , 2005 .

[19]  G. Keller,et al.  Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes , 2003 .

[20]  D. Lea,et al.  Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera) , 2000 .

[21]  H. Spero,et al.  Size-related isotopic trends in some Maastrichtian planktic foraminifera: methodological comparisons, intraspecific variability, and evidence for photosymbiosis , 1999 .

[22]  B. Huber,et al.  Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope trends in some Late Cretaceous planktonic foraminifera , 1998 .

[23]  D. Lea,et al.  Intraspecific stable isotope variability in the planktic foraminiferaGlobigerinoides sacculifer: Results from laboratory experiments , 1993 .

[24]  J. Zachos,et al.  On stable isotopic variation and earliest Paleocene planktonic foraminifera , 1993 .

[25]  I. Lerche,et al.  Opening the carbon isotope "vital effect" black box, 2, Quantitative model for interpreting foramini , 1991 .

[26]  L. Stott,et al.  Antarctic Paleogene Planktonic Foraminifer Biostratigraphy: ODP Leg 113|Sites 689 and 690 , 1990 .

[27]  DOUGLAS F. Williams,et al.  Extracting environmental information from planktonic foraminiferal δ13C data , 1988, Nature.

[28]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[29]  N. Shackleton,et al.  Carbon and Oxygen Isotope Records at DSDP Site 384 (North Atlantic) and Some Paleocene Paleotemperatures and Carbon Isotope Variations in the Atlantic Ocean , 1979 .

[30]  R. L. Carlson,et al.  Site 356: Sao Paulo Plateau , 1977 .

[31]  P. N. Chapter 12 TAXONOMY , BIOSTRATIGRAPHY , AND PHYLOGENY OF OLIGOCENE TURBOROTALITA , 2018 .

[32]  E. Molina Evidence and causes of the main extinction events in the Paleogene based on extinction and survival patterns of foraminifera , 2015 .

[33]  P. Pearson,et al.  Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale , 2011 .

[34]  B. Huber MAESTRICHTIAN PLANKTONIC FORAMINIFER BIOSTRATIGRAPHY AND THE CRETACEOUS / TERTIARY BOUNDARY AT HOLE 738 C ( KERGUELEN PLATEAU , SOUTHERN INDIAN OCEAN ) , 2006 .

[35]  Olsson,et al.  Chapter 4 WALL TEXTURES OF EOCENE PLANKTONIC FORAMINIFERA , 2006 .

[36]  I. P. Silva,et al.  Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution , 1999 .

[37]  E. Koutsoukos Phenotypic experiments into new pelagic niches in early Danian planktonic foraminifera: aftermath of the K/T boundary event , 1996, Geological Society, London, Special Publications.

[38]  R. Norris Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera , 1996, Paleobiology.

[39]  I. P. Silva,et al.  Paleocene planktonic foraminiferal biogeography and the paleooceanography of the Atlantic Ocean , 1983 .