A Model of Phytoplankton Blooms

A simple model that describes the dynamics of nutrient‐driven phytoplankton blooms is presented. Apart from complicated simulation studies, very few models reported in the literature have taken this “bottom‐up” approach. Yet, as discussed and justified from a theoretical standpoint, many blooms are strongly controlled by nutrients rather than by higher trophic levels. The analysis identifies an important threshold effect: a bloom will only be triggered when nutrients exceed a certain defined level. This threshold effect should be generic to both natural blooms and most simulation models. Furthermore, predictions are given as to how the peak of the bloom \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P_{\mathrm{max}\,}$$ \end{document} is determined by initial conditions. A number of counterintuitive results are found. In particular, it is shown that increasing initial nutrient or phytoplankton levels can act to decrease \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P_{\mathrm{max}\,}$$ \end{document} . Correct predictions require an understanding of such factors as the timing of the bloom and the period of nutrient buildup before the bloom.

[1]  H. Ducklow,et al.  A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .

[2]  A. Knap,et al.  Seasonal variability in primary production and particle flux in the northwestern Sargasso Sea: U.S. JGOFS Bermuda Atlantic time-series study , 1992 .

[3]  G. Evans A framework for discussing seasonal succession and coexistence of phytoplankton species , 1988 .

[4]  T. Macan,et al.  Biological Studies of the English Lakes , 1971 .

[5]  C. Klausmeier,et al.  Competition of Phytoplankton under Fluctuating Light , 2001, The American Naturalist.

[6]  W. Gurney,et al.  A strategic simulation model of a fjord ecosystem , 1993 .

[7]  Andrew M. Edwards,et al.  Oscillatory behaviour in a three-component plankton population model , 1996 .

[8]  Hal L. Smith,et al.  Competition for a Single Limiting Resource in Continuous Culture: The Variable-Yield Model , 1994, SIAM J. Appl. Math..

[9]  John Brindley,et al.  Ocean plankton populations as excitable media , 1994 .

[10]  Yosef Z. Yacobi,et al.  Primary production and phytoplankton in Lake Kinneret: A long‐term record (1972‐1993) , 1995 .

[11]  K. Hutter,et al.  A physical-biological coupled model for algal dynamics in lakes , 1999, Bulletin of mathematical biology.

[12]  Stephen G. Monismith,et al.  Processes governing phytoplankton blooms in estuaries. I: The local production-loss balance , 1999 .

[13]  W. Pearsall Phytoplankton in the English Lakes: II. The Composition of the Phytoplankton in Relation to Dissolved Substances , 1932 .

[14]  R. Durrett,et al.  The Importance of Being Discrete (and Spatial) , 1994 .

[15]  J. Grover Resource Competition , 1997, Population and Community Biology Series.

[16]  J. Lund Studies on Asterionella Formosa Hass: II. Nutrient Depletion and the Spring Maximum , 1950 .

[17]  L. Stone,et al.  Seasonal dynamics of the Lake Kinneret food web:The importance of the microbial loop , 2000 .

[18]  Year-to-Year Fluctuation of the Spring Phytoplankton Bloom in South San Francisco Bay: An Example of Ecological Variability at the Land-Sea Interface , 1995 .

[19]  P. Falkowski The role of phytoplankton photosynthesis in global biogeochemical cycles , 1994, Photosynthesis Research.

[20]  A. M. Edwards,et al.  Zooplankton mortality and the dynamical behaviour of plankton population models , 1999, Bulletin of mathematical biology.

[21]  B. C. Patten Mathematical Models of Plankton Production , 1968 .

[22]  Barbara B. Prézelin,et al.  A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water , 1988, Nature.

[23]  W. J. O'brien,et al.  The Dynamics of Nutrient Limitation of Phytoplankton Algae: A Model Reconsidered , 1974 .

[24]  Richard C. Dugdale,et al.  NUTRIENT LIMITATION IN THE SEA: DYNAMICS, IDENTIFICATION, AND SIGNIFICANCE1 , 1967 .

[25]  D. L. DeAngelis,et al.  Dynamics of Nutrient Cycling and Food Webs , 1992, Population and Community Biology Series.

[26]  A. Jassby,et al.  Trend, seasonality, cycle, and irregular fluctuations in primary productivity at Lake Tahoe, California-Nevada, USA , 1992, Hydrobiologia.

[27]  M. Fasham,et al.  Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton , 1997 .

[28]  J. Truscott,et al.  Equilibria, stability and excitability in a general class of plankton population models , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[29]  L. Stone,et al.  Positive feedback in aquatic ecosystems: The case of the microbial loop , 1993 .

[30]  R. Banks Growth and diffusion phenomena , 1993 .

[31]  Lee A. Segel,et al.  Mathematics applied to deterministic problems in the natural sciences , 1974, Classics in applied mathematics.