GRADIENT SCHEMES: A GENERIC FRAMEWORK FOR THE DISCRETISATION OF LINEAR, NONLINEAR AND NONLOCAL ELLIPTIC AND PARABOLIC EQUATIONS

Gradient schemes are nonconforming methods written in discrete variational formulation and based on independent approximations of functions and gradients, using the same degrees of freedom. Previous works showed that several well-known methods fall in the framework of gradient schemes. Four properties, namely coercivity, consistency, limit-conformity and compactness, are shown in this paper to be sufficient to prove the convergence of gradient schemes for linear and nonlinear elliptic and parabolic problems, including the case of nonlocal operators arising for example in image processing. We also show that the schemes of the Hybrid Mimetic Mixed family, which include in particular the Mimetic Finite Difference schemes, may be seen as gradient schemes meeting these four properties, and therefore converges for the class of above-mentioned problems.

[1]  Thierry Gallouët,et al.  An extension of the MAC scheme to locally refined meshes: convergence analysis for the full tensor time-dependent Navier–Stokes equations , 2015 .

[2]  Thierry Gallouët,et al.  Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model , 2012 .

[3]  Ivar Aavatsmark,et al.  Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .

[4]  Franck Boyer,et al.  Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..

[5]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[6]  G. Strang VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .

[7]  J. Lions,et al.  Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder , 1964 .

[8]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[9]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[10]  Alexandre Ern,et al.  Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .

[11]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[12]  F. Hermeline,et al.  Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .

[13]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[14]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[15]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[16]  Raphaèle Herbin,et al.  Gradient Scheme Approximations for Diffusion Problems , 2011 .

[17]  Thierry Gallouët,et al.  Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids , 2009, J. Num. Math..

[18]  Jérôme Droniou,et al.  Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media , 2007, SIAM J. Numer. Anal..

[19]  Robert Eymard,et al.  Study of the mixed finite volume method for Stokes and Navier‐Stokes equations , 2009 .

[20]  Raphaèle Herbin,et al.  Applications of approximate gradient schemes for nonlinear parabolic equations , 2015 .

[21]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[22]  K. Deimling Nonlinear functional analysis , 1985 .

[23]  Raphaèle Herbin,et al.  Small-stencil 3D schemes for diffusive flows in porous media , 2012 .

[24]  G. Minty,et al.  ON A "MONOTONICITY" METHOD FOR THE SOLUTION OF NONLINEAR EQUATIONS IN BANACH SPACES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[26]  Jérôme Droniou,et al.  Finite volume schemes for fully non-linear elliptic equations in divergence form , 2006 .

[27]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[28]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[29]  Olga Stasová,et al.  Convergence Analysis of Finite Volume Scheme for Nonlinear Tensor Anisotropic Diffusion in Image Processing , 2007, SIAM J. Numer. Anal..

[30]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .