GRADIENT SCHEMES: A GENERIC FRAMEWORK FOR THE DISCRETISATION OF LINEAR, NONLINEAR AND NONLOCAL ELLIPTIC AND PARABOLIC EQUATIONS
暂无分享,去创建一个
Thierry Gallouët | Raphaèle Herbin | Robert Eymard | Jérôme Droniou | R. Eymard | T. Gallouët | R. Herbin | J. Droniou
[1] Thierry Gallouët,et al. An extension of the MAC scheme to locally refined meshes: convergence analysis for the full tensor time-dependent Navier–Stokes equations , 2015 .
[2] Thierry Gallouët,et al. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model , 2012 .
[3] Ivar Aavatsmark,et al. Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .
[4] Franck Boyer,et al. Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..
[5] R. Eymard,et al. A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.
[6] G. Strang. VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .
[7] J. Lions,et al. Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder , 1964 .
[8] Gianmarco Manzini,et al. A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .
[9] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[10] Alexandre Ern,et al. Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .
[11] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[12] F. Hermeline,et al. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .
[13] F. Boyer,et al. Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .
[14] Robert Eymard,et al. A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.
[15] Gianmarco Manzini,et al. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .
[16] Raphaèle Herbin,et al. Gradient Scheme Approximations for Diffusion Problems , 2011 .
[17] Thierry Gallouët,et al. Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids , 2009, J. Num. Math..
[18] Jérôme Droniou,et al. Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media , 2007, SIAM J. Numer. Anal..
[19] Robert Eymard,et al. Study of the mixed finite volume method for Stokes and Navier‐Stokes equations , 2009 .
[20] Raphaèle Herbin,et al. Applications of approximate gradient schemes for nonlinear parabolic equations , 2015 .
[21] Joachim Weickert,et al. Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.
[22] K. Deimling. Nonlinear functional analysis , 1985 .
[23] Raphaèle Herbin,et al. Small-stencil 3D schemes for diffusive flows in porous media , 2012 .
[24] G. Minty,et al. ON A "MONOTONICITY" METHOD FOR THE SOLUTION OF NONLINEAR EQUATIONS IN BANACH SPACES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[25] Pascal Omnes,et al. A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .
[26] Jérôme Droniou,et al. Finite volume schemes for fully non-linear elliptic equations in divergence form , 2006 .
[27] M. Shashkov,et al. CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .
[28] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[29] Olga Stasová,et al. Convergence Analysis of Finite Volume Scheme for Nonlinear Tensor Anisotropic Diffusion in Image Processing , 2007, SIAM J. Numer. Anal..
[30] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .