Probabilistic elasto-plasticity: formulation in 1D

A second-order exact expression for the evolution of probability density function of stress is derived for general, one-dimensional (1-D) elastic–plastic constitutive rate equations with uncertain material parameters. The Eulerian–Lagrangian (EL) form of Fokker–Planck–Kolmogorov (FPK) equation is used for this purpose. It is also shown that by using EL form of FPK, the so called “closure problem” associated with regular perturbation methods used so far, is resolved too. The use of EL form of FPK also replaces repetitive and computationally expensive deterministic elastic–plastic computations associated with Monte Carlo technique. The derived general expressions are specialized to the particular cases of point location scale linear elastic and elastic–plastic constitutive equations, related to associated Drucker–Prager with linear hardening. In a companion paper, the solution of FPK equations for 1D is presented, discussed and illustrated through a number of examples.

[1]  Lawrence A. Bergman,et al.  Application of multi-scale finite element methods to the solution of the Fokker–Planck equation , 2005 .

[2]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[3]  Farimah Masrouri,et al.  Stochastic finite element method applied to non-linear analysis of embankments , 2000 .

[4]  Muneo Hori,et al.  Three‐dimensional stochastic finite element method for elasto‐plastic bodies , 2001 .

[5]  L. C. Lee,et al.  Wave propagation in a random medium: a complete set of the moment equations with different wavenumbers , 1974 .

[6]  J. M. Duncan,et al.  Factors of Safety and Reliability in Geotechnical Engineering , 2000 .

[7]  Gordon A. Fenton,et al.  FINITE ELEMENT MODELING OF SETTLEMENTS ON SPATIALLY RANDOM SOIL. TECHNICAL NOTE , 1996 .

[8]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[9]  Nelson F. F. Ebecken,et al.  Probabilistic and possibilistic methods for the elastoplastic analysis of soils , 2001 .

[10]  A. Karakas,et al.  On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers , 1996 .

[11]  Andreas Keese,et al.  Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .

[12]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[13]  G. Fenton Random Field Modeling of CPT Data , 2000 .

[14]  G. Meyerhof,et al.  DEVELOPMENT OF GEOTECHNICAL LIMIT STATE DESIGN , 1995 .

[15]  Gordon A. Fenton,et al.  Estimation for Stochastic Soil Models , 1999 .

[16]  Armen Der Kiureghian,et al.  Finite Element Reliability of Geometrically Nonlinear Uncertain Structures , 1991 .

[17]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[18]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[19]  Wai-Fah Chen,et al.  Plasticity for Structural Engineers , 1988 .

[20]  Gordon A. Fenton,et al.  Bearing-capacity prediction of spatially random c ϕ soils , 2003 .

[21]  Kok-Kwang Phoon,et al.  Evaluation of Geotechnical Property Variability , 1999 .

[22]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[23]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[24]  L. Zadeh The role of fuzzy logic in the management of uncertainty in expert systems , 1983 .

[25]  Hans Petter Langtangen,et al.  A general numerical solution method for Fokker-Planck equations with applications to structural reliability , 1991 .

[26]  Gregory B. Baecher,et al.  Estimating Autocovariance of In‐Situ Soil Properties , 1993 .

[27]  R. Rackwitz,et al.  Reviewing probabilistic soils modelling , 2000 .

[28]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[29]  E. Hopf Statistical Hydromechanics and Functional Calculus , 1952 .

[30]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[31]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[32]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[33]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[34]  Muneo Hori,et al.  Stochastic finite element method for elasto‐plastic body , 1999 .

[35]  O. L. Maître,et al.  Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .

[36]  Arash Nobahar,et al.  Effects of soil spatial variability on soil-structure interaction , 2003 .

[37]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[38]  Mehmet Baris Darendeli,et al.  Development of a new family of normalized modulus reduction and material damping curves , 2001 .

[39]  Peter Lumb,et al.  The Variability of Natural Soils , 1966 .

[40]  S. Koutsourelakis,et al.  Risk assessment of an interacting structure–soil system due to liquefaction , 2002 .

[41]  G. Deodatis,et al.  EFFECTS OF SPATIAL VARIABILITY ON SOIL LIQUEFACTION: SOME DESIGN RECOMMENDATIONS , 1997 .

[42]  George Deodatis,et al.  Spatial variability of soil properties: Two case studies , 1998 .

[43]  D. V. Griffiths,et al.  Bearing Capacity of Rough Rigid Strip Footing on Cohesive Soil: Probabilistic Study , 2002 .

[44]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[45]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[46]  Christian Soize,et al.  The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions , 1994, Series on Advances in Mathematics for Applied Sciences.

[47]  K. Phoon,et al.  Characterization of Geotechnical Variability , 1999 .

[48]  N. G. Van Kampen Chapter XVI – STOCHASTIC DIFFERENTIAL EQUATIONS , 2007 .

[49]  R. de Borst,et al.  Numerical analysis of localization using a viscoplastic regularization: influence of stochastic material defects , 1999 .

[50]  E. Vanmarcke Probabilistic Modeling of Soil Profiles , 1977 .

[51]  M. Levent Kavvas,et al.  Nonlinear Hydrologic Processes: Conservation Equations for Determining Their Means and Probability Distributions , 2003 .

[52]  D. V. Griffiths,et al.  Three-Dimensional Probabilistic Foundation Settlement , 2005 .

[53]  Dennis R. Hiltunen,et al.  Characterization of spectral analysis of surface waves shear wave velocity measurement uncertainty , 2004 .