Goal-optimal pareto solution of multiobjective linear programs and its computing with standard single objective LP software

Least squares goal programming on the balance set is used to determine the optimal balance point of a multiobjective linear program. Then, available linear system solvers or standard single objective LP software codes can be applied for computing goal-optimal Pareto solutions. The method is applicable for preferential relative cost arrangements (generally non-Pareto) and for use with a direct choice of gain/loss ratios for nonimprovable (Pareto) solutions. Only linear operations are used, and illustrative examples from the literature are considered. The results open new avenues in multicriteria decision making giving decision makers direct access to cost balance control and to the use of effective single objective LP software tools for multiobjective applications.

[1]  J. Franklin Methods of Mathematical Economics: Linear and Nonlinear Programming, Fixed-Point Theorems , 1980 .

[2]  Antonio Rufián-Lizana,et al.  A characterization of weakly efficient points , 1995, Math. Program..

[3]  P. Yu Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .

[4]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[5]  Joseph G. Ecker,et al.  Finding all efficient extreme points for multiple objective linear programs , 1978, Math. Program..

[6]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[7]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  E. Galperin Pareto Analysis vis-à-vis Balance Space Approach in Multiobjective Global Optimization , 1997 .

[9]  E. Galperin Nonscalarized multiobjective global optimization , 1992 .

[10]  Sanjo Zlobec,et al.  A saddle-point characterization of Pareto optima , 1994, Math. Program..

[11]  Margaret M. Wiecek,et al.  Retrieval and use of the balance set in multiobjective global optimization , 1999 .

[12]  Roger M. Y. Ho,et al.  Goal programming and extensions , 1976 .

[13]  Joseph G. Ecker,et al.  Finding efficient points for linear multiple objective programs , 1975, Math. Program..

[14]  Efim A. Galperin,et al.  The cubic algorithm for optimization and control , 1990 .

[15]  E. Galperin,et al.  Duality of Nonscalarized Multiobjective Linear Programs: Dual Balance, Level Sets, and Dual Clusters of Optimal Vectors , 2001 .

[16]  M. Ehrgott,et al.  Equivalence of Balance Points and Pareto Solutions in Multiple-Objective Programming , 1997 .

[17]  E. A. Galperin,et al.  Balance space in airport construction: Application to the North Sea island option for Schiphol Airport , 2002 .

[18]  Abraham Charnes,et al.  Necessary and Sufficient Conditions for a Pareto Optimum in Convex Programming , 1977 .

[19]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[20]  Charles Gide,et al.  Cours d'économie politique , 1911 .