Metabolic regulation, activity state, and intracellular binding of glucokinase in insulin-secreting cells.

Regulation of glucose-induced insulin secretion is crucially dependent on glucokinase function in pancreatic beta-cells. Glucokinase mRNA expression was metabolically regulated allowing continuous translation into enzyme protein. Glucokinase enzyme activity in the beta-cell was exclusively regulated by glucose. Using a selective permeabilization technique, different intracellular activity states of the glucokinase enzyme in bioengineered glucokinase-overexpressing RINm5F tissue culture cells were observed. These results could be confirmed in analogous experiments with dispersed islet cells. A diffusible glucokinase fraction with high enzyme activity could be distinguished from an intracellularly bound fraction with low activity. Glucose induced a significant long-term increase of the active glucokinase fraction. This effect was accomplished through the release of glucokinase enzyme protein from an intracellular binding site of protein character. The inhibitory function of this protein factor was abolished through proteolytic digestion or heat inactivation. Northern blot analyses revealed that this binding protein was not identical to the well-known liver glucokinase regulatory protein. This hitherto unknown new protein factor may have the function of a glucokinase regulatory protein in the pancreatic beta-cell, which may regulate glucokinase enzyme activity in a glucose-dependent manner.