Comprehensive Proteomic Analysis of Human Erythropoiesis

[1]  U. Schmitz,et al.  A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages. , 2015, Blood.

[2]  L. Pachter,et al.  A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis , 2015, Nucleic acids research.

[3]  Shaun Mahony,et al.  Genome-Wide Organization of GATA1 and TAL1 Determined at High Resolution , 2015, Molecular and Cellular Biology.

[4]  B. Paw,et al.  The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability , 2015, Science Signaling.

[5]  M. Mann,et al.  Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors* , 2015, Molecular & Cellular Proteomics.

[6]  N. Mohandas,et al.  Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. , 2014, Blood.

[7]  YongKeun Park,et al.  Profiling individual human red blood cells using common-path diffraction optical tomography , 2014, Scientific Reports.

[8]  H. Lodish,et al.  Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. , 2014, Blood.

[9]  Marco Y. Hein,et al.  A “Proteomic Ruler” for Protein Copy Number and Concentration Estimation without Spike-in Standards* , 2014, Molecular & Cellular Proteomics.

[10]  J. D. Engel,et al.  Developmental transcriptome analysis of human erythropoiesis. , 2014, Human molecular genetics.

[11]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[12]  Jie Li,et al.  Global transcriptome analyses of human and murine terminal erythroid differentiation. , 2014, Blood.

[13]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[14]  M. Mann,et al.  Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells , 2014, Nature Methods.

[15]  Philipp F. Lange,et al.  Annotating N Termini for the Human Proteome Project: N Termini and Nα-Acetylation Status Differentiate Stable Cleaved Protein Species from Degradation Remnants in the Human Erythrocyte Proteome , 2014, Journal of proteome research.

[16]  Lior Pachter,et al.  A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis , 2014, Nucleic acids research.

[17]  I. Dusanter-Fourt,et al.  Differential contributions of STAT5A and STAT5B to stress protection and tyrosine kinase inhibitor resistance of chronic myeloid leukemia stem/progenitor cells. , 2013, Cancer research.

[18]  Christian J Stoeckert,et al.  Ontogeny of erythroid gene expression. , 2013, Blood.

[19]  J. Stockman Proof of principle for transfusion of in vitro–generated red blood cells , 2013 .

[20]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[21]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[22]  S. S. Ajay,et al.  Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. , 2011, Blood.

[23]  A. Nandi,et al.  Global gene expression analysis of human erythroid progenitors. , 2011, Blood.

[24]  N. Burton,et al.  Modelling the structure of the red cell membrane. , 2011, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[25]  M. Mann,et al.  More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. , 2011, Journal of proteome research.

[26]  Shamit Soneji,et al.  Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. , 2010, Genome research.

[27]  Henriette O'Geen,et al.  Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. , 2009, Molecular cell.

[28]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[29]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[30]  Jürgen Cox,et al.  A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics , 2009, Nature Protocols.

[31]  M. Sitbon,et al.  Erythrocyte Glut1 Triggers Dehydroascorbic Acid Uptake in Mammals Unable to Synthesize Vitamin C , 2008, Cell.

[32]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[33]  Matthias Mann,et al.  Innovations: Functional and quantitative proteomics using SILAC , 2006, Nature Reviews Molecular Cell Biology.

[34]  P. Højrup,et al.  Identification of the receptor scavenging hemopexin-heme complexes. , 2005, Blood.

[35]  H. Beug,et al.  Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. , 2005, Blood.

[36]  Harvey F Lodish,et al.  Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. , 2003, Blood.

[37]  L. D. Da Costa,et al.  Temporal differences in membrane loss lead to distinct reticulocyte features in hereditary spherocytosis and in immune hemolytic anemia. , 2001, Blood.

[38]  Olivier Hermine,et al.  Caspase Activation Is Required for Terminal Erythroid Differentiation , 2001, The Journal of experimental medicine.

[39]  D. An,et al.  Purification, amplification and characterization of a population of human erythroid progenitors , 1999, British journal of haematology.

[40]  S. Koury,et al.  Polycythaemia vera. IV. Specific binding of stem cell factor to normal and polycythaemia vera highly purified erythroid progenitor cells , 1994, British journal of haematology.

[41]  P. Mayeux,et al.  The erythropoietin receptor of rat erythroid progenitor lens. Characterization and affinity cross-linkage. , 1987, The Journal of biological chemistry.

[42]  P. Mayeux,et al.  Evidence for glucocorticosteroid receptors in the erythroid cell line of fetal rat liver. , 1983, The Journal of endocrinology.

[43]  T. C. Hunt Polycythaemia Vera. , 2022, Proceedings of the Royal Society of Medicine.