Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure

A nonlocal multiple-shell model is developed for the elastic buckling of multi-walled carbon nanotubes under uniform external radial pressure on the basis of theory of nonlocal elasticity. The effect of small length scale is incorporated in the formulation. An explicit expression is derived for the critical buckling pressure for a double-walled carbon nanotube. The influence of the small length scale on the buckling pressure is examined. It is concluded that the critical buckling pressure for a carbon nanotube could be overestimated by the classic (local) shell model due to ignoring the effect of small length scale.

[1]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[2]  L. Donnell,et al.  Beams, plates and shells , 1976, Finite Element Analysis.

[3]  S. Timoshenko Theory of Elastic Stability , 1936 .

[4]  C. Q. Ru,et al.  Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips , 2001 .

[5]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[6]  Gui-Rong Liu,et al.  Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression , 2004 .

[7]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[8]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[9]  Mitani,et al.  Stiffness of single-walled carbon nanotubes under large strain , 2000, Physical review letters.

[10]  Quan Wang Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes , 2004 .

[11]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[12]  C. Ru,et al.  Elastic buckling of multiwall carbon nanotubes under high pressure. , 2003, Journal of nanoscience and nanotechnology.

[13]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[14]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[15]  Jimmy Xu,et al.  Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression , 2004 .

[16]  Gui-Rong Liu,et al.  Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity , 2005 .

[17]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[18]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[19]  Xu Han,et al.  TRANSVERSE VIBRATIONS OF DOUBLE-WALLED CARBON NANOTUBES UNDER COMPRESSIVE AXIAL LOAD , 2005 .

[20]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[21]  C. Q. Ru,et al.  Column buckling of multiwalled carbon nanotubes with interlayer radial displacements , 2000 .

[22]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[23]  L. Sudak,et al.  Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics , 2003 .

[24]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[25]  A. Rosenfield Seminar on Brittle Materials , 1974 .

[26]  Alexander Chajes,et al.  Principles of Structural Stability Theory , 1974 .

[27]  A. Maiti Mechanical deformation in carbon nanotubes – bent tubes vs tubes pushed by atomically sharp tips , 2000 .

[28]  A. Mioduchowski,et al.  Axially compressed buckling of pressured multiwall carbon nanotubes , 2003 .

[29]  Sanjay Govindjee,et al.  On the use of continuum mechanics to estimate the properties of nanotubes , 1999 .

[30]  Marvin L. Cohen,et al.  Nanotubes, nanoscience, and nanotechnology , 2001 .

[31]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[32]  C. Ru,et al.  Elastic buckling of single-walled carbon nanotube ropes under high pressure , 2000 .

[33]  Amitesh Maiti,et al.  Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. , 2002, Physical review letters.

[34]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[35]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[36]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[37]  Quan Wang,et al.  Bending instability characteristics of double-walled carbon nanotubes , 2005 .