ORIGIN OF THE TIME DEPENDENCE OF WET OXIDATION OF ALGAAS

The time dependence of the wet oxidation of high-Al-content AlGaAs can be either linear, indicating reaction-rate limitation, or parabolic, indicating diffusion-limited rates. The transition from linear to parabolic time dependence can be explained by the increased rate of the formation of intermediate As2O3 versus its reduction to elemental As. A steadily increasing thickness of the As2O3-containing region at the oxidation front will shift the process from the linear to the parabolic regime. This shift from reaction-rate limited (linear) to diffusion-limited (parabolic) time dependence is favored by increasing temperature or increasing Al mole fraction.

[1]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[2]  J. E. Griffiths,et al.  Raman scattering from anodic oxide‐GaAs interfaces , 1979 .

[3]  J. E. Griffiths,et al.  Oxide‐Substrate and Oxide‐Oxide Chemical Reactions in Thermally Annealed Anodic Films on GaSb , GaAs , and GaP , 1980 .

[4]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[5]  High-performance self-aligned p/sup +//n GaAs epitaxial JFET's incorporating AlGaAs etch-stop layer , 1990 .

[6]  A. R. Sugg,et al.  Properties and use of ln0.5(AlxGa1-x)0.5P and AlxGa1-x as native oxides in heterostructure lasers , 1992 .

[7]  A. Baca,et al.  Anisotropic electron cyclotron resonance etching of tungsten films on GaAs , 1994 .

[8]  A. J. Howard,et al.  An all implanted self-aligned enhancement mode n-JFET with Zn gates for GaAs digital applications , 1994, IEEE Electron Device Letters.

[9]  A. J. Howard,et al.  Comparison of Mg and Zn gate implants for GaAs n-channel junction field effect transistors , 1994 .

[10]  An all-implanted, self-aligned, GaAs JFET with a nonalloyed W/p/sup +/-GaAs ohmic gate contact , 1994 .

[11]  J. Zolper,et al.  High performance GaAs JFET with shallow implanted Cd-gate , 1995 .

[12]  Kent D. Choquette,et al.  Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .

[13]  Nick Holonyak,et al.  AlxGa1−xAs–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs , 1995 .

[14]  Henryk Temkin,et al.  Kinetics of thermal oxidation of AlAs in water vapor , 1996 .

[15]  U. Mishra,et al.  GaAs MESFET's on a truly insulating buffer layer: demonstration of the GaAs on insulator technology , 1997, IEEE Electron Device Letters.

[16]  St. Schröder,et al.  Lateral oxidation of buried AlxGa1−xAs layers in a wet ambient , 1997 .

[17]  Kent D. Choquette,et al.  Wet oxidation of AlGaAs: the role of hydrogen , 1997 .

[18]  W. H. Weinberg,et al.  Wet oxidation of AlAs films under ultrahigh vacuum conditions , 1997 .

[19]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[20]  Hong Q. Hou,et al.  Wet oxidation of AlxGa1−xAs: Temporal evolution of composition and microstructure and the implications for metal-insulator-semiconductor applications , 1997 .

[21]  J. Wiemeri,et al.  In situ optical monitoring of AlAs wet oxidation using a novel low-temperature low-pressure steam furnace design , 1998, IEEE Photonics Technology Letters.