Gaussian mixture model-based contrast enhancement

In this paper, a method for enhancing low contrast images is proposed. This method, called Gaussian Mixture Model based Contrast Enhancement (GMMCE), brings into play the Gaussian mixture modeling of histograms to model the content of the images. Based on the fact that each homogeneous area in natural images has a Gaussian-shaped histogram, it decomposes the narrow histogram of low contrast images into a set of scaled and shifted Gaussians. The individual histograms are then stretched by increasing their variance parameters, and are diffused on the entire histogram by scattering their mean parameters, to build a broad version of the histogram. The number of Gaussians as well as their parameters are optimized to set up a GMM with lowest approximation error and highest similarity to the original histogram. Compared to the existing histogram-based methods, the experimental results show that the quality of GMMCE enhanced pictures are mostly consistent and outperform other benchmark methods. Additionally, the computational complexity analysis show that GMMCE is a low complexity method.

[1]  Salem Saleh Al-amri Linear and Non-linear Contrast Enhancement Image , 2010 .

[2]  K. Ramar,et al.  Histogram Modified Local Contrast Enhancement for mammogram images , 2011, Appl. Soft Comput..

[3]  KimYeong-Taeg Contrast enhancement using brightness preserving bi-histogram equalization , 1997 .

[4]  Mohsen Ebrahimi Moghaddam,et al.  An image contrast enhancement method based on genetic algorithm , 2010, Pattern Recognit. Lett..

[5]  Yeong-Taeg Kim,et al.  Contrast enhancement using brightness preserving bi-histogram equalization , 1997 .

[6]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[7]  Qian Chen,et al.  Image enhancement based on equal area dualistic sub-image histogram equalization method , 1999, IEEE Trans. Consumer Electron..

[8]  ParkGyu-Hee,et al.  A contrast enhancement method using dynamic range separate histogram equalization , 2008 .

[9]  Xiubao Sui,et al.  Range Limited Bi-Histogram Equalization for image contrast enhancement , 2013 .

[10]  Abd. Rahman Ramli,et al.  Minimum mean brightness error bi-histogram equalization in contrast enhancement , 2003, IEEE Trans. Consumer Electron..

[11]  Gholamreza Anbarjafari,et al.  Satellite Image Contrast Enhancement Using Discrete Wavelet Transform and Singular Value Decomposition , 2010, IEEE Geoscience and Remote Sensing Letters.

[12]  Abd. Rahman Ramli,et al.  Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation , 2003, IEEE Trans. Consumer Electron..

[13]  Kuldeep Singh,et al.  Image enhancement using Exposure based Sub Image Histogram Equalization , 2014, Pattern Recognit. Lett..

[14]  Turgay Çelik,et al.  Two-dimensional histogram equalization and contrast enhancement , 2012, Pattern Recognit..

[15]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[16]  Min Gyo Chung,et al.  Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement , 2008, IEEE Transactions on Consumer Electronics.

[17]  Haidi Ibrahim,et al.  Brightness Preserving Dynamic Histogram Equalization for Image Contrast Enhancement , 2007, IEEE Transactions on Consumer Electronics.

[18]  B. N. Chatterji,et al.  Contrast enhancement of dark images using stochastic resonance , 2012 .

[19]  Nor Ashidi Mat Isa,et al.  Quadrants dynamic histogram equalization for contrast enhancement , 2010, IEEE Transactions on Consumer Electronics.

[20]  Sos S. Agaian,et al.  A new color contrast enhancement algorithm for robotic applications , 2012, 2012 IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

[21]  Wei-Kang Wang,et al.  Image contrast enhancement using classified virtual exposure image fusion , 2012, IEEE Transactions on Consumer Electronics.

[22]  Myung-Ryul Choi,et al.  A contrast enhancement method using dynamic range separate histogram equalization , 2008, IEEE Transactions on Consumer Electronics.

[23]  Manjunatha Mahadevappa,et al.  Brightness preserving dynamic fuzzy histogram equalization , 2010, IEEE Transactions on Consumer Electronics.

[24]  Michael Bach,et al.  Measuring Contrast Sensitivity Under Different Lighting Conditions: Comparison of Three Tests , 2006, Optometry and vision science : official publication of the American Academy of Optometry.

[25]  Gérard G. Medioni,et al.  A Framework for Robust Online Video Contrast Enhancement Using Modularity Optimization , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[26]  Sankar K. Pal,et al.  Non-parametric modified histogram equalisation for contrast enhancement , 2013, IET Image Process..

[27]  Nor Ashidi Mat Isa,et al.  Adaptive contrast enhancement methods with brightness preserving , 2010, IEEE Transactions on Consumer Electronics.

[28]  Kuo-Liang Chung,et al.  Gaussian mixture modeling of histograms for contrast enhancement , 2012, Expert Syst. Appl..

[29]  John D. Austin,et al.  Adaptive histogram equalization and its variations , 1987 .

[30]  K. Ramar,et al.  Histogram-Modified Local Contrast Enhancement for mammogram images , 2012 .

[31]  Turgay Çelik,et al.  Automatic Image Equalization and Contrast Enhancement Using Gaussian Mixture Modeling , 2012, IEEE Transactions on Image Processing.

[32]  Y. Y. Tan,et al.  Recursive sub-image histogram equalization applied to gray scale images , 2007, Pattern Recognit. Lett..