Role of critical thickness in SiGe/Si/SiGe heterostructure design for qubits

We study the critical thickness for the plastic relaxation of the Si quantum well layer embedded in a SiGe/Si/SiGe heterostructure for qubits by plan-view transmission electron microscopy and electron channeling contrast imaging. Misfit dislocation segments form due to the glide of pre-existing threading dislocations at the interface of the Si quantum well layer beyond a critical thickness given by the Matthews–Blakeslee criterion. Misfit dislocations are mostly [Formula: see text] dislocations (b=a/2 <110>) that are split into Shockely partials (b=a/6 <112>) due to the tensile strain field of the Si quantum well layer. By reducing the quantum well thickness below critical thickness, misfit dislocations can be suppressed. A simple model is applied to simulate the misfit dislocation formation and the blocking process. We discuss consequences of our findings for the layer stack design of SiGe/Si/SiGe heterostructures for usage in quantum computing hardware.

[1]  G. Capellini,et al.  Controlling the relaxation mechanism of low strain Si1−xGex/Si(001) layers and reducing the threading dislocation density by providing a preexisting dislocation source , 2020 .

[2]  D. E. Savage,et al.  State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot , 2016, npj Quantum Information.

[3]  Lars R. Schreiber,et al.  Quantum computation: Silicon comes back. , 2014, Nature nanotechnology.

[4]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[5]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[6]  M. Lagally,et al.  Nanoscale Distortions of Si Quantum Wells in Si/SiGe Quantum‐Electronic Heterostructures , 2012, Advanced materials.

[7]  Yu. B. Bolkhovityanov,et al.  Mechanisms of edge-dislocation formation in strained films of zinc blende and diamond cubic semiconductors epitaxially grown on (001)-oriented substrates , 2011 .

[8]  M. Myronov,et al.  Reverse graded SiGe/Ge/Si buffers for high-composition virtual substrates , 2010 .

[9]  S. Coppersmith,et al.  Controllable valley splitting in silicon quantum devices , 2006, cond-mat/0611221.

[10]  S. Coppersmith,et al.  Magnetic field dependence of valley splitting in realistic Si∕SiGe quantum wells , 2006, cond-mat/0602194.

[11]  M. Reuter,et al.  In-situ transmission electron microscopy studies of the interaction between dislocations in strained SiGe/Si (001) heterostructures , 2000 .

[12]  P. Zaumseil,et al.  DIFFUSE X-RAY SCATTERING OF MISFIT DISLOCATIONS AT SI1-XGEX/SI INTERFACES BY TRIPLE CRYSTAL DIFFRACTOMETRY , 1997 .

[13]  L. B. Freund,et al.  A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path , 1990 .

[14]  C. W. T. Bulle‐Lieuwma,et al.  Generation of misfit dislocations in semiconductors , 1987 .

[15]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .