Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review

The bio-active and biodegradable properties of hydroxyapatite (HA) make this material a preferred candidate for implants such as bone replacement in replacing natural tissues damaged by diseases and accidents. However, the low mechanical strength of HA hinders its application. Combining HA with a biocompatible material with a higher mechanical strength, such as a titanium (Ti) alloy, to form a composite has been of interest to researchers. A HA/Ti composite would possess characteristics essential to modern implant materials, such as bio-inertness, a low Young’s modulus, and high biocompatibility. However, there are issues in the material processing, such as the rheological behavior, stress-shielding, diffusion mechanism and compatibility between the two phases. This paper reviews the HA and Ti alloy interactions under various conditions, in vitro and in vivo tests for HA/Ti composites, and common powder metallurgy processes for HA/Ti composites (e.g., pressing and sintering, isostatic pressing, plasma spraying, and metal injection molding).

[1]  A. Kamiya,et al.  Properties of titanium biomaterial fabricated by sinter-bonding of titanium/hydroxyapatite composite surface-coated layer to pure bulk titanium , 2002 .

[2]  A. Kobayashi,et al.  Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings , 2007 .

[3]  J. Ong,et al.  Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment. , 2004, Biomaterials.

[4]  K. Khor,et al.  Post-spray hot isostatic pressing of plasma sprayed Ti6Al4V/hydroxyapatite composite coatings , 1997 .

[5]  S. Tor,et al.  Processing of biocomposite Ti-6Al-4V/HA powder , 2003 .

[6]  B. Kieback,et al.  Powders for metal injection molding , 1998 .

[7]  K. Bobzin,et al.  The influence of hot isostatic pressing on plasma sprayed coatings properties , 2006 .

[8]  Satya Prakash,et al.  Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy , 2011 .

[9]  W. F. Caley,et al.  On the advantages of using powder metallurgy in new light metal alloy design , 2006 .

[10]  J. Jakubowicz,et al.  Fabrication and properties of titanium-hydroxyapatite nanocomposites , 2010 .

[11]  S. Tor,et al.  In vitro behavior of sintered powder injection molded Ti-6Al-4V/HA. , 2002, Journal of biomedical materials research.

[12]  T. Webster,et al.  Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. , 2010, Acta biomaterialia.

[13]  Fábio Pinto da Silva,et al.  Medical design: Direct metal laser sintering of Ti–6Al–4V , 2010 .

[14]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.

[15]  Arndt F. Schilling,et al.  Advances in Porous Biomaterials for Dental and Orthopaedic Applications , 2010, Materials.

[16]  Chunxiang Cui,et al.  Titanium alloy production technology, market prospects and industry development , 2011 .

[17]  C. Park,et al.  Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. , 2009, Acta biomaterialia.

[18]  Yu-peng Lu,et al.  Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. , 2004, Biomaterials.

[19]  L. P. Karjalainen,et al.  Biological significance of nanograined/ultrafine-grained structures: Interaction with fibroblasts. , 2010, Acta biomaterialia.

[20]  G. A. Soares,et al.  Microstructure development on sintered Ti/HA biocomposites produced by powder metallurgy , 2011 .

[21]  F. Moztarzadeh,et al.  An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition , 2013 .

[22]  N. Nomura,et al.  Microstructures of Zr-Added Co-Cr-Mo Alloy Compacts Fabricated with a Metal Injection Molding Process and Their Metal Release in 1 mass% Lactic Acid , 2010 .

[23]  K. Hong,et al.  Osteoconduction at porous hydroxyapatite with various pore configurations. , 2000, Biomaterials.

[24]  Larry L Hench,et al.  Twenty-first century challenges for biomaterials , 2010, Journal of The Royal Society Interface.

[25]  Maizirwan Mel,et al.  Porous hydroxyapatite for artificial bone applications , 2007 .

[26]  K. Jurczyk,et al.  Nanostructured titanium-45S5 Bioglass scaffold composites for medical applications , 2011 .

[27]  Larry L. Hench,et al.  Bioactive materials for tissue engineering, regeneration and repair , 2003 .

[28]  K. Khor,et al.  In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). , 2003, Biomaterials.

[29]  P. Sharpe,et al.  Biological tooth replacement and repair. , 2007, Journal of oral rehabilitation.

[30]  He Hao,et al.  Porous titanium implants fabricated by metal injection molding , 2009 .

[31]  C. Ding,et al.  Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. , 2000, Biomaterials.

[32]  J. Kärrholm,et al.  Fixation and Bone Remodeling Around a Low Stiffness Stem in Revision Surgery , 2008, Clinical orthopaedics and related research.

[33]  K. Kim,et al.  Fabrication and Mechanical Properties of Porous Ti/HA Composites for Bone Fixation Devices , 2010 .

[34]  A. Tampieri,et al.  Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability , 2000 .

[35]  V. Firouzdor,et al.  Sintering of biocompatible P/M Co–Cr–Mo alloy (F-75) for fabrication of porosity-graded composite structures , 2008 .

[36]  Han Ping Hong,et al.  Fabrication of metal matrix composites by metal injection molding—A review , 2008 .

[37]  S. Liang,et al.  The rheology of metal injection molding , 2003 .

[38]  D. Koss,et al.  Densification of titanium powder during hot isostatic pressing , 1988 .

[39]  V. Nelea,et al.  Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate , 2007, Journal of materials science. Materials in medicine.

[40]  Yu Zhou,et al.  Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. , 2008, Acta biomaterialia.

[41]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[42]  D. Heaney,et al.  Isotropic forming of porous structures via metal injection molding , 2005 .

[43]  Zhixia Li,et al.  Current progress in inorganic artificial biomaterials , 2011, Journal of Artificial Organs.

[44]  Y. Zhou,et al.  In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. , 2002, Biomaterials.

[45]  T. Goswami,et al.  Knee implants – Review of models and biomechanics , 2009 .

[46]  S. Tor,et al.  Ti-6A1-4V/HA composite feedstock for injection molding , 2002 .

[47]  T. Hashida,et al.  New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique , 2006 .

[48]  M. Niinomi,et al.  Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone , 2011, International journal of biomaterials.

[49]  Michael McDonald,et al.  Fundamentals of Modern Manufacturing: Materials, Processes and Systems , 2016 .

[50]  N. Rajendran,et al.  Surface Modification and In Vitro Characterization of Cp-Ti and Ti-5Al-2Nb-1Ta Alloy in Simulated Body Fluid , 2012, Journal of Materials Engineering and Performance.

[51]  Jan W. Gooch,et al.  Encyclopedic dictionary of polymers , 2007 .

[52]  Sergey V. Dorozhkin,et al.  Bioceramics of calcium orthophosphates. , 2010, Biomaterials.

[53]  Naoyuki Nomura,et al.  Mechanical properties of porous titanium compacts prepared by powder sintering , 2003 .

[54]  Helen V. Atkinson,et al.  Fundamental aspects of hot isostatic pressing: An overview , 2000 .

[55]  T. Webster,et al.  Nanotechnology and nanomaterials: Promises for improved tissue regeneration , 2009 .

[56]  A. A. Egorov,et al.  High-temperature hydroxyapatite-titanium interaction , 2010 .

[57]  E. Chang,et al.  Influence of deposition temperature on mechanical properties of plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO2 intermediate layer , 2003 .

[58]  F. N. Oktar,et al.  Bond-coating in plasma-sprayed calcium-phosphate coatings , 2006, Journal of materials science. Materials in medicine.

[59]  N. Verdonschot,et al.  Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures , 2011, Journal of materials science. Materials in medicine.

[60]  Hongbing Wang,et al.  In vitro and in vivo biocompatibility of graded hydroxyapatite–zirconia composite bioceramic , 2008, Journal of materials science. Materials in medicine.

[61]  Mitzi Waltz,et al.  Webster's New World Medical Dictionary , 2000 .

[62]  L. Brinson,et al.  A bioactive titanium foam scaffold for bone repair. , 2005, Acta biomaterialia.

[63]  Jingchuan Zhu,et al.  Mechanical and biological properties of hydroxyapatite reinforced with 40 vol. % titanium particles for use as hard tissue replacement , 2004, Journal of materials science. Materials in medicine.

[64]  R. Snyder,et al.  Sintering effect on mechanical properties of composites of natural hydroxyapatites and titanium , 2009 .

[65]  David Cebon,et al.  Biocompatibility: Meeting a Key Functional Requirement of Next-Generation Medical Devices , 2008, Toxicologic pathology.

[66]  Kaia Tõnsuaadu,et al.  A review on the thermal stability of calcium apatites , 2012, Journal of Thermal Analysis and Calorimetry.

[67]  Serena M. Best,et al.  Bioceramics: Past, present and for the future , 2008 .

[68]  R. German,et al.  Injection molding of metals and ceramics , 1997 .

[69]  D. Dunand,et al.  Processing of NiTi Foams by Transient Liquid Phase Sintering , 2011, Journal of Materials Engineering and Performance.

[70]  B. Basu,et al.  Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites , 2010, Journal of materials science. Materials in medicine.

[71]  H. Imai,et al.  Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. , 2010, Acta biomaterialia.

[72]  S. Meguid Mechanics and mechanisms of toughening of advanced ceramics , 1996 .

[73]  H. Hong,et al.  Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy , 2009, Journal of materials science. Materials in medicine.

[74]  A. Ruys,et al.  Sintering effects on the strength of hydroxyapatite. , 1995, Biomaterials.

[75]  Hideki Yoshikawa,et al.  Interconnected porous hydroxyapatite ceramics for bone tissue engineering , 2009, Journal of The Royal Society Interface.

[76]  K. Sreekumar,et al.  Plasma sprayed hydroxy apatite coatings , 1996 .

[77]  Chenghuang Tang,et al.  Novel β-type Zr–Mo–Ti alloys for biological hard tissue replacements , 2014 .

[78]  J. A. Rodríguez,et al.  Conventional Powder Metallurgy Process and Characterization of Porous Titanium for Biomedical Applications , 2011 .

[79]  V. Mittova,et al.  Solid-phase interaction in the hydroxyapatite/titanium heterostructures upon high-temperature annealing in air and argon , 2008 .

[80]  S. Tor,et al.  Processing of HA-coated Ti-6Al-4V by a ceramic slurry approach: an in vitro study. , 2001, Biomaterials.

[81]  A. Manonukul,et al.  Effects of replacing metal powder with powder space holder on metal foam produced by metal injection moulding , 2010 .

[82]  S. Tor,et al.  Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. , 2002, Biomaterials.

[83]  L. D. de Vasconcellos,et al.  HISTOMORPHOMETRIC ANALYSIS OF PURE TITANIUM IMPLANTS WITH POROUS SURFACE VERSUS ROUGH SURFACE , 2006, Journal of applied oral science : revista FOB.

[84]  H. Toda,et al.  Mechanical Properties of Biocompatible Beta-Type Titanium Alloy Coated with Calcium Phosphate Invert Glass-Ceramic Layer , 2005 .

[85]  Y. Carvalho,et al.  Porous titanium scaffolds produced by powder metallurgy for biomedical applications , 2008 .

[86]  A. Kobayashi,et al.  Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying. , 2012, Journal of the mechanical behavior of biomedical materials.

[87]  M. Geetha,et al.  In vivo studies of the ceramic coated titanium alloy for enhanced osseointegration in dental applications , 2009, Journal of materials science. Materials in medicine.

[88]  S. Tor,et al.  Effects of debinding parameters on powder injection molded Ti-6Al-4V/HA composite parts , 2001 .

[89]  W. Bonfield,et al.  Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study. , 2005, Biomaterials.

[90]  M. Bram,et al.  Characterization of porous, net-shaped NiTi alloy regarding its damping and energy-absorbing capacity , 2011 .

[91]  Wensheng Zhang,et al.  A literature review of titanium metallurgical processes , 2011 .

[92]  M. Nanko,et al.  A hot isostatic process for fabricating porous materials , 1995 .

[93]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[94]  A. Agarwal,et al.  Development of high strength hydroxyapatite by solid-state-sintering process , 2007 .

[95]  K. Gross,et al.  Osteoclast resorption of thermal spray hydoxyapatite coatings is influenced by surface topography. , 2012, Acta biomaterialia.

[97]  E. Chang,et al.  The bonding of plasma-sprayed hydroxyapatite coatings to titanium: effect of processing, porosity and residual stress , 2003 .

[98]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[99]  L. D. de Vasconcellos,et al.  Porous titanium for biomedical applications: an experimental study on rabbits. , 2010, Medicina oral, patologia oral y cirugia bucal.

[100]  S. Komarov,et al.  Fabrication of hydroxyapatite coatings by the ball impact process , 2012 .

[101]  M. Shokrgozar,et al.  Fabrication of biocompatible titanium scaffolds using space holder technique , 2012, Journal of Materials Science: Materials in Medicine.

[102]  Y. Dong,et al.  Fabrication and characterization of hydroxyapatite reinforced with 20 vol % Ti particles for use as hard tissue replacement , 2002, Journal of materials science. Materials in medicine.

[103]  B. Wu,et al.  Bond degradation at the plasma-sprayed HA coating/Ti-6AI-4V alloy interface: an in vitro study , 1995 .

[104]  I. Todd,et al.  Porous NiTi alloy by metal injection moulding/sintering of elemental powders: Effect of sintering temperature , 2012 .

[105]  B. Šuštaršič,et al.  Influence of feedstock characteristics and process parameters on properties of MIM parts made of 316L , 2007 .

[106]  H. Kawahara Bioceramics for hard tissue replacements , 1987 .

[107]  T. Webster,et al.  Enhanced functions of osteoblasts on nanophase ceramics. , 2000, Biomaterials.

[108]  Xinhua Wu,et al.  Effect of Hot-Isostatic-Pressing Parameters on the Microstructure and Properties of Powder Ti-6Al-4V Hot-Isostatically-Pressed Samples , 2010 .

[109]  Jingchuan Zhu,et al.  Fabrication and characterization of titanium-matrix composite with 20 vol% hydroxyapatite for use as heavy load-bearing hard tissue replacement , 2006, Journal of materials science. Materials in medicine.