Interactions between carbon dioxide, climate, weathering, and the Antarctic ice sheet in the earliest Oligocene

[1]  E. Martin,et al.  Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition , 2013 .

[2]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[3]  P. Barrett,et al.  Antarctic topography at the Eocene–Oligocene boundary , 2012 .

[4]  G. Knorr,et al.  A warm Miocene climate at low atmospheric CO2 levels , 2011 .

[5]  Hugues Goosse,et al.  Response of the Greenland and Antarctic Ice Sheets to Multi-Millennial Greenhouse Warming in the Earth System Model of Intermediate Complexity LOVECLIM , 2011 .

[6]  P. Wilson,et al.  Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling , 2011 .

[7]  J. Zachos,et al.  Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition , 2011 .

[8]  David Pollard,et al.  A retrospective look at coupled ice sheet–climate modeling , 2010 .

[9]  P. Pearson,et al.  Atmospheric carbon dioxide through the Eocene–Oligocene climate transition , 2009, Nature.

[10]  B. Luyendyk,et al.  West Antarctic paleotopography estimated at the Eocene‐Oligocene climate transition , 2009 .

[11]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[12]  Caroline H. Lear,et al.  Thresholds for Cenozoic bipolar glaciation , 2008, Nature.

[13]  Y. Goddéris,et al.  Shield effect on continental weathering: Implication for climatic evolution of the Earth at the geological timescale , 2008 .

[14]  G. Ravizza,et al.  Os isotope chemostratigraphy applied to organic-rich marine sediments from the Eocene-Oligocene transition on the West African margin (ODP Site 959) , 2008 .

[15]  David Pollard,et al.  Amplification of Cretaceous Warmth by Biological Cloud Feedbacks , 2008, Science.

[16]  Heiko Pälike,et al.  The Heartbeat of the Oligocene Climate System , 2006, Science.

[17]  R. Pierrehumbert,et al.  A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup , 2006 .

[18]  J. Zachos,et al.  Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene , 2005 .

[19]  R. DeConto,et al.  Hysteresis in Cenozoic Antarctic ice-sheet variations , 2005 .

[20]  Caroline H. Lear,et al.  Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle , 2004 .

[21]  P. Oliva,et al.  Chemical weathering in granitic environments , 2003 .

[22]  R. DeConto,et al.  A coupled climate–ice sheet modeling approach to the Early Cenozoic history of the Antarctic ice sheet , 2003 .

[23]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[24]  J. Oerlemans On glacial inception and orography , 2002 .

[25]  Catherine Ritz,et al.  Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region , 2001 .

[26]  B. Dupré,et al.  Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers , 1999 .

[27]  Lee R. Kump,et al.  Global chemical erosion over the last 250 MY: Variations due to changes in paleogeography, paleoclimate, and paleogeology , 1999 .

[28]  James J. Hack,et al.  Response of Climate Simulation to a New Convective Parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3) , 1998 .

[29]  David Pollard,et al.  Greenland and Antarctic Mass Balances for Present and Doubled Atmospheric CO2 from the GENESIS Version-2 Global Climate Model , 1997 .

[30]  Karen A. Salamy,et al.  High‐resolution (104 years) deep‐sea foraminiferal stable isotope records of the Eocene‐Oligocene climate transition , 1996 .

[31]  Huug van den Dool,et al.  Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts , 1996 .

[32]  Y. Erel,et al.  A silicate weathering mechanism linking increases in marine 87Sr/ 86Sr with global glaciation , 1995, Nature.

[33]  Lee R. Kump,et al.  Global chemical erosion during the Last Glacial Maximum and the present: Sensitivity to changes in lithology and hydrology , 1994 .

[34]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[35]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[36]  C. W. Thornthwaite An Approach Toward a Rational Classification of Climate , 1948 .

[37]  R. DeConto,et al.  Cenozoic variations of the Antarctic Ice Sheet: A model-data mismatch? , 2007 .

[38]  Caroline H. Lear,et al.  Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean , 2005, Nature.

[39]  R. DeConto,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[40]  Philippe Huybrechts,et al.  Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles , 2002 .

[41]  K. Salamy,et al.  Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data , 1999 .

[42]  F. Pattyn,et al.  Report of the Third EISMINT Workshop on Model Intercomparison , 1998 .

[43]  L. Kump,et al.  Global Chemical Erosion during the Cenozoic: Weatherability Balances the Budgets , 1997 .

[44]  R. DeConto Late Cretaceous Climate, Vegetation and Ocean Interactions: AN Earth System Approach to Modeling AN Extreme Climate , 1996 .

[45]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[46]  John Harte,et al.  Consider a Spherical Cow: A course in environmental problem solving , 1985 .

[47]  C. W. Thornthwaite An approach toward a rational classification of climate. , 1948 .