Ab initio study of small gold clusters

[1]  C. Kittel Introduction to solid state physics , 1954 .

[2]  R. F. Barrow,et al.  Rotational analysis of bands of the gaseous Au2 molecule , 1967 .

[3]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[4]  K. Gingerich,et al.  Atomization energies and heats of formation of gaseous Au2, Tb2, TbAu, HoAu, TbAu2, and HoAu2 , 1974 .

[5]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[6]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .

[7]  B. Mile,et al.  E.s.r. spectrum of matrix isolated Au3 , 1983 .

[8]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[9]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[10]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[11]  S. Langhoff,et al.  Theoretical studies of diatomic and triatomic systems containing the group IB atoms Cu, Ag, and Au , 1986 .

[12]  Boustani,et al.  Systematic ab initio configuration-interaction study of alkali-metal clusters: Relation between electronic structure and geometry of small Li clusters. , 1987, Physical review. B, Condensed matter.

[13]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[14]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[15]  Charles W. Bauschlicher,et al.  Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au) , 1989 .

[16]  C. Bauschlicher On the electron affinity of Au3 , 1989 .

[17]  K. Balasubramanian,et al.  Geometries and energy separations of 14 electronic states of Au4 , 1989 .

[18]  C. Bauschlicher,et al.  Comments on "Binding energies and ionization potentials of the tetramers of copper, silver, and gold" , 1990 .

[19]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[20]  C. Bauschlicher,et al.  Theoretical study of the positive ions of the dimers and trimers of the group IB metals (Cu, Ag, and Au) , 1990 .

[21]  K. Balasubramanian,et al.  Geometries and energy separations of low-lying electronic states of silver tetramer and copper tetramer , 1990 .

[22]  K. Balasubramanian,et al.  Spectroscopic properties of low-lying electronic states of Au2 , 1990 .

[23]  C. Bauschlicher,et al.  Theoretical study of the homonuclear tetramers and pentamers of the group IB metals (Cu, Ag, and Au) , 1990 .

[24]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[25]  K. Balasubramanian,et al.  Is Au6 a circular ring , 1991 .

[26]  P. Schwerdtfeger Relativistic and electron-correlation contributions in atomic and molecular properties: benchmark calculations on Au and Au2 , 1991 .

[27]  Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments , 1991 .

[28]  P. Pyykkö,et al.  Ab initio Calculations on the (ClAuPH3)2 Dimer with Relativistic Pseudopotential: Is the “Aurophilic Attraction” a Correlation Effect? , 1991 .

[29]  K. Balasubramanian,et al.  Electron affinities of Ag4 and Au4 , 1991 .

[30]  K. Balasubramanian,et al.  Electronic states of Cu+4, Ag+4, and Au+4: Interpretation of the optical spectra of Cu+4 , 1991 .

[31]  K. Balasubramanian,et al.  Excited electronic states of Au3 , 1991 .

[32]  K. Balasubramanian,et al.  Electronic structure of Cu6, Ag6, Au6, and their positive ions , 1992 .

[33]  M. Jacob The European Physical Society , 1993 .

[34]  J. Koutecký,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties , 1993 .

[35]  N. Rösch,et al.  Relativistic density‐functional studies of naked and ligated gold clusters , 1994 .

[36]  I. G. Kaplan,et al.  A comparative theoretical study of stable geometries and energetic properties of small silver clusters , 1994 .

[37]  O. Novaro,et al.  Non-additive forces in atomic clusters , 1995 .

[38]  O. Cavalleri,et al.  Ordering processes at the interface , 1996 .

[39]  David J. Schiffrin,et al.  Nanotechnology and nucleotides , 1996, Nature.

[40]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[41]  Posada-Amarillas,et al.  Structural and vibrational analysis of amorphous Au55 clusters. , 1996, Physical review. B, Condensed matter.

[42]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[43]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[44]  Notker Rösch,et al.  From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147 , 1997 .

[45]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .