Some q-congruences arising from certain identities

In this paper, by constructing some identities, we prove some $q$-analogues of some congruences. For example, for any odd integer $n>1$, we show that \begin{gather*} \sum_{k=0}^{n-1} \frac{(q^{-1};q^2)_k}{(q;q)_k} q^k \equiv (-1)^{(n+1)/2} q^{(n^2-1)/4} - (1+q)[n] \pmod{\Phi_n(q)^2},\\ \sum_{k=0}^{n-1}\frac{(q^3;q^2)_k}{(q;q)_k} q^k \equiv (-1)^{(n+1)/2} q^{(n^2-9)/4} + \frac{1+q}{q^2}[n]\pmod{\Phi_n(q)^2}, \end{gather*} where the $q$-Pochhanmmer symbol is defined by $(x;q)_0=1$ and $(x;q)_k = (1-x)(1-xq)\cdots(1-xq^{k-1})$ for $k\geq1$, the $q$-integer is defined by $[n]=1+q+\cdots+q^{n-1}$ and $\Phi_n(q)$ is the $n$-th cyclotomic polynomial. The $q$-congruences above confirm some recent conjectures of Gu and Guo.

[1]  Neil J. Calkin Factors of sums of powers of binomial coefficients , 1998 .

[2]  Victor J. W. Guo A q-analogue of the (A.2) supercongruence of Van Hamme for primes $$p\equiv 1\pmod {4}$$ , 2020 .

[3]  R. Tauraso Some $q$-analogs of congruences for central binomial sums , 2012, 1201.6152.

[4]  George E. Andrews,et al.  On the $q$-analog of Kummer’s theorem and applications , 1973 .

[5]  He-Xia Ni,et al.  Divisibility of some binomial sums , 2018, Acta Arithmetica.

[6]  Victor J. W. Guo Proof of a q-congruence conjectured by Tauraso , 2019, International Journal of Number Theory.

[7]  George E. Andrews,et al.  Applications of Basic Hypergeometric Functions , 1974 .

[8]  G. Andrews,et al.  Special Functions: The Hypergeometric Functions , 1999 .

[9]  Roberto B. Corcino On -binomial coefficients. , 2008 .

[10]  Jiang Zeng,et al.  Some congruences involving central q-binomial coefficients , 2009, Adv. Appl. Math..

[11]  Leon M. Hall,et al.  Special Functions , 1998 .

[12]  Victor J. W. Guo A q-analogue of the (I.2) supercongruence of Van Hamme , 2019, International Journal of Number Theory.

[13]  Roberto Tauraso,et al.  q-Analogs of some congruences involving Catalan numbers , 2009, Adv. Appl. Math..

[14]  Zhi-Wei Sun Binomial coefficients, Catalan numbers and Lucas quotients , 2009, 0909.5648.

[15]  Victor J. W. Guo A q -analogue of a Ramanujan-type supercongruence involving central binomial coefficients , 2018 .

[16]  Victor J. W. Guo A q-analogue of the (J.2) supercongruence of Van Hamme , 2018, Journal of Mathematical Analysis and Applications.

[17]  L. Carlitz A q-identity , 1963 .

[18]  Victor J. W. Guo,et al.  Two q-congruences from Carlitz’s formula , 2020, Period. Math. Hung..

[19]  Zhi-Wei Sun,et al.  New congruences for central binomial coefficients , 2008, Adv. Appl. Math..