Proofs and types

Sense, denotation and semantics natural deduction the Curry-Howard isomorphism the normalisation theorem Godel's system T coherence spaces denotational semantics of T sums in natural deduction system F coherence semantics of the sum cut elimination (Hauptsatz) strong normalisation for F representation theorem semantics of System F what is linear logic?

[1]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[2]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[3]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[4]  Georg Kreisel,et al.  Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .

[5]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[6]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[7]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[8]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[9]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[10]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[11]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[12]  Robert A. Kowalski,et al.  Logic for problem solving , 1982, The computer science library : Artificial intelligence series.

[13]  J. Hyland The Effective Topos , 1982 .

[14]  D. Scott Domains for Denotational Semantics , 1982, ICALP.

[15]  Daniel Leivant Reasoning about functional programs and complexity classes associated with type disciplines , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[16]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[17]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[18]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[19]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[20]  Andrew M. Pitts,et al.  The theory of constructions: Categorical semantics and topos-theoretic models , 1987 .

[21]  Edmund Robinson,et al.  Logical Aspects of Denotational Semantics , 1987, Category Theory and Computer Science.

[22]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[23]  Jean-Yves Girard,et al.  Linear Logic and Lazy Computation , 1987, TAPSOFT, Vol.2.

[24]  Glynn Winskel,et al.  DI-Domains as a Model of Polymorphism , 1987, MFPS.

[25]  Yves Lafont The Linear Abstract Machine (Corrigenda) , 1988, Theor. Comput. Sci..

[26]  Kim B. Bruce,et al.  A modest model of records, inheritance and bounded quantification , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[27]  Yves Lafont,et al.  The Linear Abstract Machine , 1988, Theor. Comput. Sci..

[28]  J. Girard Proof Theory and Logical Complexity , 1989 .

[29]  A. Jung,et al.  Cartesian closed categories of domains , 1989 .

[30]  Daniel Leivant,et al.  Contracting proofs to programs , 1989 .

[31]  John W. Gray,et al.  Categories in Computer Science and Logic , 1989 .

[32]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[33]  Glynn Winskel,et al.  Domain Theoretic Models of Polymorphism , 1989, Inf. Comput..

[34]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .

[35]  Paul Taylor,et al.  Quantitative Domains, Groupoids and Linear Logic , 1989, Category Theory and Computer Science.

[36]  Paul Taylor An algebraic approach to stable domains , 1990 .

[37]  Albert R. Meyer,et al.  Polymorphism is conservative over simple types , 1990 .

[38]  Michel Parigot,et al.  Programming with Proofs , 1990, J. Inf. Process. Cybern..