Tukey depth: linear programming and applications
暂无分享,去创建一个
[1] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[2] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[3] Alicia Nieto-Reyes,et al. The random Tukey depth , 2007, Comput. Stat. Data Anal..
[4] Pat Morin,et al. Absolute approximation of Tukey depth: Theory and experiments , 2013, Comput. Geom..
[5] Pat Morin,et al. Output-sensitive algorithms for Tukey depth and related problems , 2008, Stat. Comput..
[6] Xiaohui Liu,et al. Computing Halfspace Depth and Regression Depth , 2014, Commun. Stat. Simul. Comput..
[7] Tatjana Lange,et al. Fast nonparametric classification based on data depth , 2012, Statistical Papers.
[8] Tatjana Lange,et al. Classifying real-world data with the $${ DD}\alpha $$DDα-procedure , 2014, Adv. Data Anal. Classif..
[9] Miroslav Siman,et al. Computing multiple-output regression quantile regions , 2012, Comput. Stat. Data Anal..
[10] Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth , 2004, SODA '04.
[11] Regina Y. Liu,et al. DD-Classifier: Nonparametric Classification Procedure Based on DD-Plot , 2012 .
[12] Mia Hubert,et al. ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.
[13] Xiaohui Liu,et al. Computing projection depth and its associated estimators , 2012, Statistics and Computing.
[14] D. Paindaveine,et al. Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth , 2010, 1002.4486.
[15] M. Hubert,et al. Multivariate Functional Halfspace Depth , 2012 .
[16] Franco P. Preparata,et al. The Densest Hemisphere Problem , 1978, Theor. Comput. Sci..
[17] Tatjana Lange,et al. Computing zonoid trimmed regions of dimension d>2 , 2009, Comput. Stat. Data Anal..
[18] S. Majumdar. Robust estimation of principal components from depth-based multivariate rank covariance matrix , 2015, 1502.07042.
[19] R. Koenker,et al. Regression Quantiles , 2007 .
[20] K. Mosler,et al. OF ECONOMIC AND SOCIAL STATISTICS UNIVERSITY OF COLOGNE No . 06 / 2010 An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension , 2010 .
[21] J. Tukey. Mathematics and the Picturing of Data , 1975 .
[22] Davy Paindaveine,et al. Computing multiple-output regression quantile regions from projection quantiles , 2011, Computational Statistics.
[23] K. Mosler. Depth Statistics , 2012, Encyclopedia of Image Processing.
[24] P. Chaudhuri,et al. On data depth and distribution-free discriminant analysis using separating surfaces , 2005 .
[25] R. Serfling,et al. General notions of statistical depth function , 2000 .
[26] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[27] R. Dyckerhoff. Data depths satisfying the projection property , 2004 .
[28] Pavlo Mozharovskyi,et al. Exact computation of the halfspace depth , 2014, Comput. Stat. Data Anal..
[29] Gleb A. Koshevoy,et al. The Tukey Depth Characterizes the Atomic Measure , 2002 .