Whole-Genomes From the Extinct Xerces Blue Butterfly Reveal Low Diversity and Long-Term Population Decline

The Xerces Blue (Glaucopsyche xerces) is considered to be the first butterfly to become extinct at global scale in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941. To explore the demographic history of this iconic butterfly and to better understand why it went extinct, we sequenced at medium coverage the genomes of four 80 to 100-year-old Xerces Blue specimens and seven historic specimens of its closest relative, the Silvery Blue (G. lygdamus). We compared these to a novel annotated genome of the Green-Underside Blue (G. alexis). Phylogenetic relationships inferred from complete mitochondrial genomes indicate that Xerces Blue was a distinct species that diverged from the Silvery Blue lineage at least 850,000 years ago. Using nuclear genomes, we show that both species experienced population growth during the MIS 7 interglacial period, but the Xerces Blue decreased to a very low effective population size subsequently, a trend opposite to that observed in the Silvery Blue. Runs of homozygosity in the Xerces Blue were significantly greater than in the Silvery Blue, suggesting a higher incidence of inbreeding. In addition, the Xerces Blue carried a higher proportion of derived, putatively deleterious amino acid-changing alleles than the Silvery Blue. These results demonstrate that the Xerces Blue experienced more than 100 thousand years of population decline, prior to its human-induced final extinction.

[1]  C. Moreau,et al.  Museum genomics reveals the Xerces blue butterfly (Glaucopsyche xerces) was a distinct species driven to extinction , 2021, Biology Letters.

[2]  A. Monteiro,et al.  optix is involved in eyespot development via a possible positional information mechanism , 2021 .

[3]  J. Leonard,et al.  Pleistocene climate fluctuations drove demographic history of African golden wolves (Canis lupaster) , 2020, Molecular ecology.

[4]  Mario Stanke,et al.  BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database , 2020, bioRxiv.

[5]  F. Hoffmann,et al.  Wnt Genes in Wing Pattern Development of Coliadinae Butterflies , 2020, Frontiers in Ecology and Evolution.

[6]  Mark Borodovsky,et al.  GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins , 2020, NAR genomics and bioinformatics.

[7]  Cédric Feschotte,et al.  RepeatModeler2 for automated genomic discovery of transposable element families , 2020, Proceedings of the National Academy of Sciences.

[8]  O. Schweiger,et al.  A complete time-calibrated multi-gene phylogeny of the European butterflies , 2019, bioRxiv.

[9]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[10]  P. Andolfatto,et al.  Dichotomy of Dosage Compensation along the Neo Z Chromosome of the Monarch Butterfly , 2019, Current Biology.

[11]  Jennifer Lu,et al.  Improved metagenomic analysis with Kraken 2 , 2019, Genome Biology.

[12]  A. Manica,et al.  The configuration of Northern Hemisphere ice sheets through the Quaternary , 2019, Nature Communications.

[13]  F. Delsuc,et al.  MitoFinder: Efficient automated large‐scale extraction of mitogenomic data in target enrichment phylogenomics , 2019, bioRxiv.

[14]  N. Wahlberg,et al.  Priors and Posteriors in Bayesian Timing of Divergence Analyses: The Age of Butterflies Revisited , 2019, Systematic biology.

[15]  T. Marquès-Bonet,et al.  Historical Genomes Reveal the Genomic Consequences of Recent Population Decline in Eastern Gorillas , 2019, Current Biology.

[16]  Evgeny M. Zdobnov,et al.  OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs , 2018, Nucleic Acids Res..

[17]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[18]  A. Albrechtsen,et al.  Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data , 2018, Genetics.

[19]  Kay Prüfer,et al.  snpAD: an ancient DNA genotype caller , 2018, bioRxiv.

[20]  Gerard Talavera,et al.  A Comprehensive and Dated Phylogenomic Analysis of Butterflies , 2018, Current Biology.

[21]  Peter K. Joshi,et al.  Runs of homozygosity: windows into population history and trait architecture , 2018, Nature Reviews Genetics.

[22]  D. Díez-del-Molino,et al.  Quantifying Temporal Genomic Erosion in Endangered Species. , 2017, Trends in ecology & evolution.

[23]  M. Thomas P. Gilbert,et al.  Single‐tube library preparation for degraded DNA , 2017 .

[24]  N. Patel,et al.  Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity , 2017, Proceedings of the National Academy of Sciences.

[25]  Anyi Mazo-Vargas,et al.  Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence , 2017, Proceedings of the National Academy of Sciences.

[26]  Brent S. Pedersen,et al.  Mosdepth: quick coverage calculation for genomes and exomes , 2017, bioRxiv.

[27]  R. D. Reed,et al.  Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns , 2016, Nature Communications.

[28]  Simon H. Martin,et al.  Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene , 2016, Genetics.

[29]  Stinus Lindgreen,et al.  AdapterRemoval v2: rapid adapter trimming, identification, and read merging , 2016, BMC Research Notes.

[30]  Yali Xue,et al.  BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data , 2016, Bioinform..

[31]  Yang Dong,et al.  Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies , 2015, Nature Communications.

[32]  G. Abecasis,et al.  An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data , 2015, Genome research.

[33]  Swapan Mallick,et al.  Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth , 2015, Current Biology.

[34]  Anders Albrechtsen,et al.  ANGSD: Analysis of Next Generation Sequencing Data , 2014, BMC Bioinformatics.

[35]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[36]  Q. Feng,et al.  Transcriptomic analysis of developmental features of Bombyx mori wing disc during metamorphosis , 2014, BMC Genomics.

[37]  M. Jakobsson,et al.  Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal , 2014, Proceedings of the National Academy of Sciences.

[38]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[39]  Cristina E. Valdiosera,et al.  Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments , 2013, Proceedings of the National Academy of Sciences.

[40]  Camilo Salazar,et al.  Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies , 2013, Genome research.

[41]  F. Bakker,et al.  Genomic Treasure Troves: Complete Genome Sequencing of Herbarium and Insect Museum Specimens , 2013, PloS one.

[42]  Zachary A. Szpiech,et al.  Long runs of homozygosity are enriched for deleterious variation. , 2013, American journal of human genetics.

[43]  Philip L. F. Johnson,et al.  mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters , 2013, Bioinform..

[44]  A. Krogh,et al.  Improving ancient DNA read mapping against modern reference genomes , 2012, BMC Genomics.

[45]  R. Vilà,et al.  A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the Phengaris-Maculinea clade. , 2011, Molecular phylogenetics and evolution.

[46]  R. Durbin,et al.  Inference of human population history from individual whole-genome sequences. , 2011, Nature.

[47]  R. Durbin,et al.  Inference of Human Population History From Whole Genome Sequence of A Single Individual , 2011, Nature.

[48]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[49]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[50]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[51]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[52]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[53]  James Haile,et al.  Non-Destructive Sampling of Ancient Insect DNA , 2009, PloS one.

[54]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[55]  P. Hammerstein,et al.  THE EFFECT OF WOLBACHIA VERSUS GENETIC INCOMPATIBILITIES ON REINFORCEMENT AND SPECIATION , 2005, Evolution; international journal of organic evolution.

[56]  R. Frankham,et al.  Most species are not driven to extinction before genetic factors impact them. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  N. Pierce,et al.  CODIVERSIFICATION IN AN ANT‐PLANT MUTUALISM: STEM TEXTURE AND THE EVOLUTION OF HOST USE IN CREMATOGASTER (FORMICIDAE: MYRMICINAE) INHABITANTS OF MACARANGA (EUPHORBIACEAE) , 2004, Evolution; international journal of organic evolution.

[58]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[59]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[60]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[61]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[62]  N. Pierce,et al.  CODIVERSIFICATION IN AN ANT-PLANT MUTUALISM: STEM TEXTURE AND THE EVOLUTION OF HOST USE IN CREMATOGASTER (FORMICIDAE: MYRMICINAE) INHABITANTS OF MACARANGA (EUPHORBIACEAE) , 2004 .