Cone-Copositive Piecewise Quadratic Lyapunov Functions for Conewise Linear Systems

In this technical note, cone-copositive piecewise quadratic Lyapunov functions (PWQ-LFs) for the stability analysis of conewise linear systems are proposed. The existence of a PWQ-LF is formulated as the feasibility of a cone-copositive programming problem which is represented in terms of linear matrix inequalities. A constructive procedure for its solution is provided. Examples show the effectiveness of the approach, also in the case of uncertain conewise linear systems.

[1]  Antonis Papachristodoulou,et al.  Robust Stability Analysis of Nonlinear Hybrid Systems , 2009, IEEE Transactions on Automatic Control.

[2]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[3]  Luigi Iannelli,et al.  A cone-copositive approach for the stability of piecewise linear differential inclusions , 2011, IEEE Conference on Decision and Control and European Control Conference.

[4]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[5]  Gabriele Eichfelder,et al.  Foundations of Set-Semidefinite Optimization , 2010 .

[6]  Mirjam Dür,et al.  Algorithmic copositivity detection by simplicial partition , 2008 .

[7]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[8]  Mirjam Dür,et al.  Copositive Lyapunov functions for switched systems over cones , 2009, Syst. Control. Lett..

[9]  A. Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[10]  M. Fu,et al.  Piecewise Lyapunov functions for robust stability of linear time-varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[11]  Zhendong Sun,et al.  Stability of piecewise linear systems revisited , 2010, Annu. Rev. Control..

[12]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[13]  Reiner Horst,et al.  On generalized bisection of n-simplices , 1997, Math. Comput..

[14]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[15]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[16]  Mirjam Dür,et al.  An improved algorithm to test copositivity , 2012, J. Glob. Optim..

[17]  Corrado De Concini,et al.  Topics in Hyperplane Arrangements, Polytopes and Box-Splines , 2010 .

[18]  Van Bokhoven Piecewise-linear modelling and analysis , 1981 .

[19]  Michael Margaliot,et al.  Necessary and sufficient conditions for absolute stability: the case of second-order systems , 2003 .

[20]  Emanuele Garone,et al.  Piecewise quadratic Lyapunov functions over conical partitions for robust stability analysis , 2015 .

[21]  Morten Hovd,et al.  Relaxing PWQ Lyapunov stability criteria for PWA systems , 2013, Autom..