Comprehensive analysis of melting enhancement by circular Y-shaped fins in a vertical shell-and-tube heat storage system

[1]  M. Ghalambaz,et al.  The influence of the metal foam layer shape on the thermal charging response time of a latent heat thermal energy storage system , 2023, Journal of Energy Storage.

[2]  Xiangwei Dong,et al.  Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior , 2022 .

[3]  M. Ghalambaz,et al.  Computational Modeling of Latent Heat Thermal Energy Storage in a Shell-Tube Unit: Using Neural Networks and Anisotropic Metal Foam , 2022, Mathematics.

[4]  D. Toghraie,et al.  Effect of Y-shaped fins on the performance of shell-and-tube thermal energy storage unit , 2022, Case Studies in Thermal Engineering.

[5]  N. Qasem,et al.  A numerical investigation of a heat transfer augmentation finned pear-shaped thermal energy storage system with nano-enhanced phase change materials , 2022, Journal of Energy Storage.

[6]  Yinwei Wang,et al.  Multi-Stage Optimization of LHTESS by utilization of Y-shaped Fin in a rectangular enclosure , 2022, Case Studies in Thermal Engineering.

[7]  W. Tao,et al.  Solid–Liquid Thermal Energy Storage , 2022 .

[8]  S. Tao,et al.  Heat Transfer Performance and Structural Optimization of a Novel Micro-channel Heat Sink , 2022, Chinese Journal of Mechanical Engineering.

[9]  Hussein M. Taqi Al-Najjar,et al.  Improved Melting of Latent Heat Storage Using Fin Arrays with Non-Uniform Dimensions and Distinct Patterns , 2022, Nanomaterials.

[10]  W. Yaïci,et al.  Melting Enhancement in a Triple-Tube Latent Heat Storage System with Sloped Fins , 2021, Nanomaterials.

[11]  Z. Tan,et al.  Thermodynamic insights into n-alkanes phase change materials for thermal energy storage , 2021 .

[12]  M. Sadeghzadeh,et al.  Experimental and numerical investigation on convective heat transfer in actively heated bundle-pipe , 2021, Engineering Applications of Computational Fluid Mechanics.

[13]  M. Ahmadi,et al.  Effects of in-line deflectors on the overall performance of a channel heat exchanger , 2021, Engineering Applications of Computational Fluid Mechanics.

[14]  N. Sidik,et al.  Evaluation and Improvement of Thermal Energy of Heat Exchangers with SWCNT, GQD Nanoparticles and PCM (RT82) , 2020, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.

[15]  Ye Zhu,et al.  Amorphous silicon from low-temperature reduction of silica in the molten salts and its lithium-storage performance , 2020 .

[16]  P. Talebizadehsardari,et al.  A numerical study of a PCM-based passive solar chimney with a finned absorber , 2020 .

[17]  Chuankun Jia,et al.  Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion , 2020 .

[18]  Jiangwei Liu,et al.  Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit , 2020, Journal of Energy Storage.

[19]  C. Markides,et al.  Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: A review , 2020 .

[20]  S. Tiari,et al.  A numerical study on the combined effect of dispersed nanoparticles and embedded heat pipes on melting and solidification of a shell and tube latent heat thermal energy storage system , 2020 .

[21]  Emmanuel C. Nsofor,et al.  Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review , 2019, International Journal of Heat and Mass Transfer.

[22]  C. Nie,et al.  Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage , 2019, International Journal of Heat and Mass Transfer.

[23]  Emmanuel C. Nsofor,et al.  Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles , 2019, Energy Conversion and Management.

[24]  B. Moghtaderi,et al.  Renewable Energy Systems to Enhance Buildings Thermal Performance and Decrease Construction Costs , 2018, Energy Procedia.

[25]  S. Mahmud,et al.  Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system , 2018 .

[26]  Irfan Anjum Badruddin,et al.  A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles , 2018 .

[27]  Emmanuel C. Nsofor,et al.  Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination , 2017 .

[28]  I. Parry,et al.  How Large Are Global Fossil Fuel Subsidies , 2017 .

[29]  Tao Xu,et al.  Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM , 2016 .

[30]  M. J. Hosseini,et al.  A numerical method for PCM-based pin fin heat sinks optimization , 2015 .

[31]  T. Bauer,et al.  Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage , 2015, Beilstein journal of nanotechnology.

[32]  Xiang Wang,et al.  Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs) , 2015 .

[33]  Frede Blaabjerg,et al.  Renewable energy resources: Current status, future prospects and their enabling technology , 2014 .

[34]  Rahman Saidur,et al.  Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system , 2014 .

[35]  Philippe Marty,et al.  Experimental and numerical study of annular PCM storage in the presence of natural convection , 2013 .

[36]  Kamaruzzaman Sopian,et al.  Enhance heat transfer for PCM melting in triplex tube with internal-external fins , 2013 .

[37]  Ahmet Ünal,et al.  Numerical evaluation of a triple concentric-tube latent heat thermal energy storage , 2013 .

[38]  Wei-Biao Ye,et al.  Numerical simulation on phase-change thermal storage/release in a plate-fin unit , 2011 .

[39]  W. Lu,et al.  Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) , 2010 .

[40]  Selçuk Bilgen,et al.  Renewable Energy for a Clean and Sustainable Future , 2004 .

[41]  S. R. Bull,et al.  Renewable energy today and tomorrow , 2001, Proc. IEEE.

[42]  Vaughan R Voller,et al.  ENTHALPY-POROSITY TECHNIQUE FOR MODELING CONVECTION-DIFFUSION PHASE CHANGE: APPLICATION TO THE MELTING OF A PURE METAL , 1988 .

[43]  M. J. Hosseini,et al.  Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger , 2018, Appl. Math. Comput..

[44]  Qun Zhao,et al.  Energy revolution: From a fossil energy era to a new energy era , 2016 .

[45]  K. Nithyanandam,et al.  Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage , 2014 .

[46]  G. Faninger Thermal Energy Storage , 2005 .

[47]  Numerical investigation of the in fl uence of mushy zone parameter A mush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems , 2022 .