Does sterol availability in a forested headwater stream constitute a nutritional constraint for macroinvertebrates?

[1]  M. Cellamare,et al.  Microalgal food sources greatly improve macroinvertebrate growth in detritus‐based headwater streams: Evidence from an instream experiment , 2022, Freshwater Biology.

[2]  Apostolos-Manuel Koussoroplis,et al.  Early spring food resources and the trophic structure of macroinvertebrates in a small headwater stream as revealed by bulk and fatty acid stable isotope analysis , 2021, Hydrobiologia.

[3]  S. Bunn,et al.  Preferential retention of algal carbon in benthic invertebrates: Stable isotope and fatty acid evidence from an outdoor flume experiment , 2020, Freshwater biology.

[4]  F. Guérold,et al.  Temperature and nutrient effects on the relative importance of brown and green pathways for stream ecosystem functioning: A mesocosm approach , 2020, Freshwater Biology.

[5]  X. Jing,et al.  Insect Sterol Nutrition: Physiological Mechanisms, Ecology, and Applications. , 2020, Annual review of entomology.

[6]  J. Wehr,et al.  Complementary information from fatty acid and nutrient stoichiometry data improve stream food web analyses , 2019, Hydrobiologia.

[7]  P. Ralph,et al.  Phytosterol biosynthesis and production by diatoms (Bacillariophyceae). , 2019, Phytochemistry.

[8]  C. Robin,et al.  Mining insect genomes for functionally affiliated genes. , 2019, Current opinion in insect science.

[9]  J. M. Tierno de Figueroa,et al.  Life cycles and nymphal feeding of Isoperla morenica Tierno de Figueroa and Luzón-Ortega, 2011 and Brachyptera vera cordubensis Berthélemy and Baena, 1984 (Plecoptera: Perlodidae and Taeniopterygidae) in a Mediterranean stream (Spain) , 2017 .

[10]  S. Behmer Overturning dogma: tolerance of insects to mixed-sterol diets is not universal. , 2017, Current opinion in insect science.

[11]  A. Flecker,et al.  Limited seasonal variation in food quality and foodweb structure in an Adirondack stream: insights from fatty acids , 2017, Freshwater Science.

[12]  G. She,et al.  The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities , 2017, Molecules.

[13]  F. Guérold,et al.  Minor food sources can play a major role in secondary production in detritus‐based ecosystems , 2017 .

[14]  S. Bunn,et al.  High-quality algae attached to leaf litter boost invertebrate shredder growth , 2016, Freshwater Science.

[15]  P. Merkel,et al.  Sterols of freshwater microalgae : potential implications for zooplankton nutrition , 2016 .

[16]  S. Bunn,et al.  The importance of high-quality algal food sources in stream food webs - current status and future perspectives , 2016 .

[17]  E. Peltomaa,et al.  Suitability of Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for Phytoplankton , 2016, Front. Plant Sci..

[18]  J. H. Oliveira,et al.  The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology. , 2015, Journal of insect physiology.

[19]  D. Martin‐Creuzburg,et al.  Compound-specific δ(13)C analyses reveal sterol metabolic constraints in an aquatic invertebrate. , 2015, Rapid communications in mass spectrometry : RCM.

[20]  A. Wacker,et al.  Thresholds for Sterol-Limited Growth of Daphnia magna: A Comparative Approach Using 10 Different Sterols , 2014, Journal of Chemical Ecology.

[21]  X. Jing,et al.  Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects. , 2014, Journal of insect physiology.

[22]  C. Douady,et al.  Sterols and steroids in a freshwater crustacean (Proasellus meridianus): hormonal response to nutritional input , 2014 .

[23]  A. Clark,et al.  Mutations in the neverland Gene Turned Drosophila pachea into an Obligate Specialist Species , 2012, Science.

[24]  J. Niu,et al.  Excess dietary cholesterol may have an adverse effect on growth performance of early post-larval Litopenaeus vannamei , 2012, Journal of Animal Science and Biotechnology.

[25]  D. Mykles Ecdysteroid metabolism in crustaceans , 2011, The Journal of Steroid Biochemistry and Molecular Biology.

[26]  T. Samocha,et al.  Cholesterol supplements for Litopenaeus vannamei reared on plant based diets in the presence of natural productivity , 2011 .

[27]  Jean-David Grattepanche,et al.  Lack-of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea , 2011 .

[28]  N. Sushchik,et al.  Water moss as a food item of the zoobenthos in the Yenisei River , 2011, Central European Journal of Biology.

[29]  M. Perga,et al.  Nutritional importance of minor dietary sources for leaping grey mullet Liza saliens (Mugilidae) during settlement: insights from fatty acid δ13C analysis , 2010 .

[30]  S. Derenne,et al.  Chemotaxonomical investigations of fossil and extant beeches. I. Leaf lipids from the extant Fagus sylvatica L. , 2007 .

[31]  M. Graça,et al.  Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication : implications for stream assessment , 2006 .

[32]  J. Lancaster,et al.  Intraguild omnivory in predatory stream insects , 2005 .

[33]  Olivier Dangles,et al.  Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning , 2004 .

[34]  Dongyan Liu,et al.  Geometric models for calculating cell biovolume and surface area for phytoplankton , 2003 .

[35]  R. Céréghino Shift from a Herbivorous to a Carnivorous Diet during the Larval Development of some Rhyacophila Species (Trichoptera) , 2002 .

[36]  M. Wells,et al.  Absorption and tissue distribution of cholesterol in Manduca sexta. , 2002, Archives of insect biochemistry and physiology.

[37]  S. Behmer,et al.  Sterol Metabolic Constraints as a Factor Contributing to the Maintenance of Diet Mixing in Grasshoppers (Orthoptera: Acrididae) , 2000, Physiological and Biochemical Zoology.

[38]  M. Dobson,et al.  A perspective on leaf litter breakdown in streams , 1999 .

[39]  E. F. Benfield Comparison of Litterfall Input to Streams , 1997, Journal of the North American Benthological Society.

[40]  P. Gülz,et al.  Composition of Lipids of Beech (Fagus sylvatica L.) Seed Oil , 1989 .

[41]  L. D’Abramo,et al.  Sterol requirement of cultured juvenile crayfish, Pacifastacus leniusculus , 1985 .

[42]  B. R. Taylor,et al.  Interaction of water temperature and shredders on leaf litter breakdown: a comparison of streams in Canada and Norway , 2013, Hydrobiologia.

[43]  Kvetoslava Bottová,et al.  Life cycle, feeding and secondary production of Plecoptera community in a constant temperature stream in Central Europe , 2013 .

[44]  W. Traunspurger,et al.  Feeding of biofilm-dwelling nematodes examined using HPLC-analysis of gut pigment contents , 2011, Hydrobiologia.

[45]  O. Dangles,et al.  Quantification of diet variability in a stream amphipod: implications for ecosystem functioning , 2008 .

[46]  M. Graça,et al.  A laboratory study on feeding plasticity of the shredder Sericostoma vittatum Rambur (Sericostomatidae) , 2006, Hydrobiologia.

[47]  J. Volkman,et al.  Sterols in microorganisms , 2002, Applied Microbiology and Biotechnology.

[48]  L. Gilbert,et al.  Control and biochemical nature of the ecdysteroidogenic pathway. , 2002, Annual review of entomology.

[49]  J. A. Svoboda Variability of metabolism and function of sterols in insects. , 1999, Critical reviews in biochemistry and molecular biology.

[50]  A. Kanazawa,et al.  Lipid metabolism of the prawn Penaeus japonicus during maturation: Variation in lipid profiles of the ovary and hepatopancreas , 1989 .