Photoelectron spectrum and structure of B2O2

The He i photoelectron spectrum of B2O2 is presented. A comparison of ab initio molecular orbital calculations and the observed spectrum provides the most conclusive evidence to date that the geometrical structure is D∞h O–B–B–O. Even though the experiment is conducted at 1200 °C, vibrational structure is evident in the first two bands. A complex Franck–Condon fitting is used to infer the geometrical changes occurring when the various ionic states are formed. The results are in fairly good agreement with ΔSCF calculations. The orbital ordering in B2O2, πg,πu,σg,σu differs from that in the isoelectronic molecule C2N2.

[1]  J. S. Binkley,et al.  The calculation of spin-restricted single-determinant wavefunctions , 1974 .

[2]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[3]  L. Cederbaum,et al.  A many‐body approach to the vibrational structure in molecular electronic spectra. I. Theory , 1976 .

[4]  J. Hollas,et al.  Geometry of C2N2 + and HCN+ from low-energy photoelectron spectroscopy , 1972 .

[5]  K. Groeneveld,et al.  Molecular Ions: Geometric and Electronic Structures , 1983 .

[6]  S. Koide,et al.  Über die Berechnung von Franck-Condon-Integralen , 1960 .

[7]  D. R. Stull JANAF thermochemical tables , 1966 .

[8]  Max Wagner,et al.  Exakte Berechnung von Franck-Condon-Integralen , 1959 .

[9]  F. Ansbacher,et al.  A Note on the Overlap Integral of two Harmonic Oscillator Wave Functions , 1959 .

[10]  R. F. Porter,et al.  A MASS SPECTROMETRIC STUDY OF GASEOUS SPECIES IN THE Al-Al$sub 2$O$sub 3$ SYSTEM , 1955 .

[11]  D. W. Turner,et al.  Molecular Photoelectron Spectroscopy , 1972 .

[12]  J. B. Coon,et al.  The Franck-Condon principle and the structures of excited electronic states of molecules , 1962 .

[13]  M. J. D. Powell,et al.  A Method for Minimizing a Sum of Squares of Non-Linear Functions Without Calculating Derivatives , 1965, Comput. J..

[14]  J. Berkowitz,et al.  PES of higher temperature vapors: Lithium halide monomers and dimers , 1979 .

[15]  L. Cederbaum,et al.  A theoretical photoelectron spectrum of cyanogen by a Green-function method , 1975 .

[16]  R. G. Albridge,et al.  Isotopic and vibronic coupling effects in the valence electron spectra of H2 16O, H2 18O, and D2 16O , 1975 .

[17]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[18]  S. K. Gupta,et al.  The molecular structure of B2O2(g), B2Ss(g), Al2O2(g) and a number of the aluminum family chalcogenides as determined from thermochemical considerations , 1976 .

[19]  R. L. Dekock,et al.  Electronic structure and molecular topology of boron and aluminum suboxides , 1981 .

[20]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[21]  J. Hollas,et al.  The geometry of the ground state of C2H2 + from photoelectron spectroscopy compared with that of C2H2 in some Rydberg states , 1971 .

[22]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[23]  A. N. Syverud Comments on the molecular structure of B2O2(g), Al2O2(g) and other chalcogenides of the aluminum family , 1976 .