A coupled SPH-DEM approach to model the interactions between multiple red blood cells in motion in capillaries

[1]  Yuantong Gu,et al.  Numerical investigation of motion and deformation of a single red blood cell in a stenosed capillary , 2015 .

[2]  Chwee Teck Lim,et al.  Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow , 2014 .

[3]  S. Saha,et al.  Deformation of a single red blood cell in a microvessel , 2014 .

[4]  Guang Lin,et al.  A lattice Boltzmann fictitious domain method for modeling red blood cell deformation and multiple‐cell hydrodynamic interactions in flow , 2013 .

[5]  Z. Xing,et al.  Simulation Study of Hemodynamics of Red Blood Cells in Stenotic Microvessels , 2013 .

[6]  M. Socol,et al.  Full dynamics of a red blood cell in shear flow , 2012, Proceedings of the National Academy of Sciences.

[7]  W. Senadeera,et al.  Numerical simulation of red blood cells' motion: a review , 2012 .

[8]  K. Nagayama,et al.  3D Particle Simulations of Deformation of Red Blood Cells in Micro-Capillary Vessel , 2012 .

[9]  R. Glowinski,et al.  Deformation of a single red blood cell in bounded Poiseuille flows. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Subra Suresh,et al.  Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria , 2011, PLoS Comput. Biol..

[11]  Jens Harting,et al.  Two-dimensional vesicle dynamics under shear flow: effect of confinement. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Jacob K. White,et al.  An implicit immersed boundary method for three-dimensional fluid-membrane interactions , 2009, J. Comput. Phys..

[13]  C. Lim,et al.  Deformability study of breast cancer cells using microfluidics , 2009, Biomedical microdevices.

[14]  L. Munn,et al.  Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. , 2005, Biophysical journal.

[15]  C. Pozrikidis Axisymmetric motion of a file of red blood cells through capillaries , 2005 .

[16]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[17]  L. D. Shvartsman,et al.  Optical transmission of blood: effect of erythrocyte aggregation , 2003, IEEE Transactions on Biomedical Engineering.

[18]  R. Coppel,et al.  The malaria-infected red blood cell: Structural and functional changes , 2001, Advances in Parasitology.

[19]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[20]  A. Pries,et al.  Biophysical aspects of blood flow in the microvasculature. , 1996, Cardiovascular research.

[21]  T. Secomb Flow-dependent rheological properties of blood in capillaries. , 1987, Microvascular research.

[22]  L. E. Bayliss The axial drift of the red cells when blood flows in a narrow tube , 1959, The Journal of physiology.

[23]  Robin Fåhræus,et al.  THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES , 1931 .

[24]  Tsorng-Whay Pan,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Dynamical Simulation of Red Blood Cell Rheology in Microvessels Tsorng-whay Pan and Tong Wang , 2022 .

[25]  Shigeo Wada,et al.  Simulation Study on Effects of Hematocrit on Blood Flow Properties Using Particle Method , 2006 .

[26]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[27]  R. Freitas,et al.  Exploratory design in medical nanotechnology: a mechanical artificial red cell. , 1998, Artificial cells, blood substitutes, and immobilization biotechnology.