Molecular Modeling of Mercury Porosimetry

[1]  F. Porcheron,et al.  Dynamic aspects of mercury porosimetry: a lattice model study. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[2]  M. Thommes,et al.  Modeling mercury porosimetry using statistical mechanics. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[3]  F. Porcheron,et al.  Modeling desorption of fluids from disordered mesoporous materials. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[4]  P. A. Monson,et al.  Phase behavior and dynamics of fluids in mesoporous glasses. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. Rigby,et al.  The influence of mercury contact angle, surface tension, and retraction mechanism on the interpretation of mercury porosimetry data. , 2002, Journal of colloid and interface science.

[6]  S. Rigby,et al.  Determination of the multiscale percolation properties of porous media using mercury porosimetry , 2002 .

[7]  L. Sarkisov,et al.  Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  L. Sarkisov,et al.  Mean-field theory of fluid adsorption in a porous glass , 2001 .

[9]  L. Sarkisov,et al.  Modeling of Adsorption and Desorption in Pores of Simple Geometry Using Molecular Dynamics , 2001 .

[10]  S. Rigby,et al.  Characterization of Macroscopic Structural Disorder in Porous Media Using Mercury Porosimetry. , 2001, Journal of colloid and interface science.

[11]  Constantinos E. Salmas,et al.  Mercury Porosimetry: Contact Angle Hysteresis of Materials with Controlled Pore Structure. , 2001, Journal of colloid and interface science.

[12]  G. Tarjus,et al.  Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior. , 2001, Physical review letters.

[13]  L. Sarkisov,et al.  Hysteresis in Monte Carlo and molecular dynamics simulations of adsorption in porous materials , 2000 .

[14]  Rigby A Hierarchical Structural Model for the Interpretation of Mercury Porosimetry and Nitrogen Sorption. , 2000, Journal of colloid and interface science.

[15]  M. A. Day,et al.  Use of Mercury Intrusion Data, Combined with Nitrogen Adsorption Measurements, as a Probe of Pore Network Connectivity , 1999 .

[16]  C. L. Y. Leon,et al.  New perspectives in mercury porosimetry , 1998 .

[17]  A. Vidales,et al.  Invasion percolation in correlated porous media , 1996 .

[18]  S. Blacher,et al.  Interpretation of mercury porosimetry applied to aerogels , 1995 .

[19]  Cathy J. Ridgway,et al.  Void space modeling of mercury intrusion hysteresis in sandstone, paper coating, and other porous media , 1995 .

[20]  F. Rojas,et al.  EFFECT OF POROUS STRUCTURE ON THE DETERMINATION OF PORE-SIZE DISTRIBUTION BY MERCURY POROSIMETRY AND NITROGEN SORPTION , 1991 .

[21]  S. Lowell,et al.  Powder surface area and porosity , 1984 .

[22]  S. Lowell,et al.  Equivalency of mercury porosimetry and gas adsorption , 1981 .

[23]  L. Moscou,et al.  Practical use of mercury porosimetry in the study of porous solids , 1981 .

[24]  J. Van Brakel,et al.  Mercury porosimetry: state of the art , 1981 .

[25]  S. Lowell,et al.  Influence of contact angle on hysteresis in mercury porosimetry , 1981 .

[26]  C. Orr Application of mercury penetration to materials analysis , 1969 .

[27]  G. Tarjus,et al.  Capillary Condensation in Disordered Porous Materials , 2001 .

[28]  K. Gubbins Theory and Simulation of Adsorption in Micropores , 1997 .

[29]  D. Henderson Fundamentals of Inhomogeneous Fluids , 1992 .

[30]  Robert Evans,et al.  Fundamentals of Inhomogeneous Fluids , 1992 .

[31]  S. Lowell Continuous scan mercury porosimetry and the pore potential as a factor in porosimetry hysteresis , 1980 .

[32]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .