Mean curvature flow

Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur under the flow, what the flow looks like near these singularities, and what this implies for the structure of the singular set. At the end, we will briefly discuss how one may be able to use the flow in low-dimensional topology.

[1]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[2]  A. Ranicki The Algebraic Theory of Surgery II. Applications to Topology , 1980 .

[3]  Gerhard Huisken,et al.  Mean curvature flow singularities for mean convex surfaces , 1999 .

[4]  Tom Ilmanen,et al.  Lectures on mean curvature flow and related equations , 1998 .

[5]  F. Almgren,et al.  On the radial behavior of minimal surfaces and the uniqueness of their tangent cones , 1981 .

[6]  T. Colding,et al.  Rigidity of generic singularities of mean curvature flow , 2013, 1304.6356.

[7]  B. White The mathematics of F. J. Almgren, Jr. , 1998 .

[8]  Gerhard Huisken,et al.  Mean curvature flow with surgeries of two–convex hypersurfaces , 2009 .

[9]  William P. Minicozzi,et al.  Surveys in geometric analysis and relativity , 2011 .

[10]  S. Novikov,et al.  HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I , 2004 .

[11]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[12]  Louise Poissant Part I , 1996, Leonardo.

[13]  Construction of complete embedded self-similar surfaces under mean curvature flow, part III , 2007, 0704.0981.

[14]  D. Sullivan Triangulating homotopy equivalences , 1965 .

[15]  Klaus Ecker,et al.  Regularity Theory for Mean Curvature Flow , 2003 .

[16]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[17]  T. Colding,et al.  The singular set of mean curvature flow with generic singularities , 2014, 1405.5187.

[18]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[19]  J. Bernstein,et al.  A sharp lower bound for the entropy of closed hypersurfaces up to dimension six , 2014, 1406.2966.

[20]  H. Fédérer,et al.  The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension , 1970 .

[21]  K. Ecker A local monotonicity formula for mean curvature flow , 2001 .

[22]  S. Łojasiewicz Ensembles semi-analytiques , 1965 .

[23]  William P. Minicozzi,et al.  Minimal surfaces and mean curvature flow , 2011, 1102.1411.

[24]  C. Epstein,et al.  A stable manifold theorem for the curve shortening equation , 1987 .

[25]  S. J. Kleene,et al.  Mean curvature self-shrinkers of high genus: Non-compact examples , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).

[26]  F. Almgren $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two , 1983 .

[27]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[28]  E. J. McShane,et al.  Solution of the Plateau problem form-dimensional surfaces of varying topological type , 1960 .

[29]  G. Huisken,et al.  Interior estimates for hypersurfaces moving by mean curvature , 1991 .

[30]  Panagiotis E. Souganidis,et al.  Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature , 1993 .

[31]  B. Kleiner,et al.  On Brendle's estimate for the inscribed radius under mean curvature flow , 2013, 1309.3231.

[32]  S. Brendle An inscribed radius estimate for mean curvature flow in Riemannian manifolds , 2013, 1310.3439.

[33]  M. Spivak,et al.  Spaces satisfying Poincaré duality , 1967 .

[34]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[35]  Niels Moller Closed self-shrinking surfaces in R^3 via the torus , 2011 .

[36]  U. Mayer A numerical scheme for moving boundary problems that are gradient flows for the area functional , 2000, European Journal of Applied Mathematics.

[37]  Y. Giga,et al.  Mean curvature flow through singularities for surfaces of rotation , 1991 .

[38]  A. Ranicki The algebraic theory of surgery , 1980 .

[39]  B. White Subsequent singularities in mean-convex mean curvature flow , 2011, 1103.1469.

[40]  Tobias Holck Colding,et al.  The round sphere minimizes entropy among closed self-shrinkers , 2012, 1205.2043.

[41]  T. Colding,et al.  Uniqueness of blowups and Łojasiewicz inequalities , 2013, 1312.4046.

[42]  B. White THE NATURE OF SINGULARITIES IN MEAN CURVATURE FLOW OF MEAN-CONVEX SETS , 2002 .

[43]  Brian White Evolution of curves and surfaces by mean curvature , 2002 .

[44]  David L. Chopp,et al.  Computation of Self-Similar Solutions for Mean Curvature Flow , 1994, Exp. Math..

[45]  T. Toro Doubling and Flatness: Geometry of Measures , 1998 .

[46]  Lu Wang Uniqueness of Self-similar Shrinkers with Asymptotically Conical Ends , 2011, 1110.0450.

[47]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[48]  I. Sigal,et al.  Neck Pinching Dynamics under Mean Curvature Flow , 2007, 0708.2938.

[49]  B. White The size of the singular set in mean curvature flow of mean-convex sets , 2000 .

[50]  T. Colding,et al.  Generic mean curvature flow I; generic singularities , 2009, 0908.3788.

[51]  H JavierGuachalla The Mathematics , 2007 .

[52]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[53]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[54]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[55]  A. Scott,et al.  Ann Arbor , 1980 .

[56]  B. Kleiner,et al.  Mean curvature flow with surgery , 2014, 1404.2332.

[57]  A. Ranicki The Algebraic Theory of Surgery I. Foundations , 1980 .

[58]  T. Colding,et al.  Smooth compactness of self-shrinkers , 2009, 0907.2594.

[59]  F. Schulze Uniqueness of compact tangent flows in Mean Curvature Flow , 2011, 1107.4643.

[60]  Rate of convergence of the mean curvature flow , 2005, math/0502530.

[61]  G. Huisken Asymptotic-behavior for singularities of the mean-curvature flow , 1990 .

[62]  B. Kleiner,et al.  Mean Curvature Flow of Mean Convex Hypersurfaces , 2013, 1304.0926.

[63]  Charles Terence Clegg Wall,et al.  Surgery on compact manifolds , 1970 .

[64]  S. Ferry,et al.  Epsilon Surgery Theory , 2006 .

[65]  B. Andrews Noncollapsing in mean-convex mean curvature flow , 2012 .

[66]  The topology of hypersurfaces moving by mean curvature , 1995 .

[67]  G. Huisken,et al.  Convexity estimates for mean curvature flow and singularities of mean convex surfaces , 1999 .

[68]  J. Milnor,et al.  Groups of Homotopy Spheres, I , 2015 .

[69]  B. White Stratification of minimal surfaces, mean curvature flows, and harmonic maps. , 1997 .