The superconvergence of composite Newton–Cotes rules for Hadamard finite-part integral on a circle

We study the general (composite) Newton–Cotes rules for the computation of Hadamard finite-part integral on a circle with the hypersingular kernel $${\sin^{-2}\frac{x-s}2 }$$ and focus on their pointwise superconvergence phenomenon, i.e., when the singular point coincides with some a priori known point, the convergence rate is higher than what is globally possible. We show that the superconvergence rate of the (composite) Newton–Cotes rules occurs at the zeros of a special function $${\Phi_k(\tau)}$$ and prove the existence of the superconvergence points. The relation between $${\Phi_k(\tau)}$$ and $${\mathcal{S}_k(\tau)}$$ defined in Wu and Sun (Numer Math 109:143–165, 2008) is established, and the efficient calculation of Cotes coefficients is also discussed. Several numerical examples are provided to validate the theoretical analysis.

[1]  Giovanni Monegato,et al.  Numerical integration schemes for the BEM solution of hypersingular integral equations , 1999 .

[2]  Weiwei Sun,et al.  The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval , 2008, Numerische Mathematik.

[3]  Philsu Kim,et al.  Two trigonometric quadrature formulae for evaluating hypersingular integrals , 2003 .

[4]  Wu,et al.  A NONOVERLAPPING DOMAIN DECOMPOSITION METHOD FOR EXTERIOR 3-D PROBLEM , 2001 .

[5]  Ruixia Li,et al.  On the coupling of BEM and FEM for exterior problems for the Helmholtz equation , 1999, Math. Comput..

[6]  Takemitsu Hasegawa,et al.  Uniform approximations to finite Hilbert transform and its derivative , 2004 .

[7]  Jiming Wu,et al.  A superconvergence result for the second-order Newton–Cotes formula for certain finite-part integrals , 2005 .

[8]  Leon M. Hall,et al.  Special Functions , 1998 .

[9]  Weiwei Sun,et al.  Newton-Cotes Formulae for the Numerical Evaluation of Certain Hypersingular Integrals , 2005, Computing.

[10]  D. Yu,et al.  A Domain Decomposition Method Based on Natural Boundary Reduction for Nonlinear Time-Dependent Exterior Wave Problems , 2002, Computing.

[11]  Dehao Yu,et al.  Superconvergence of the composite Simpson's rule for a certain finite-part integral and its applications , 2009 .

[12]  David Elliott,et al.  Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals , 1997 .

[13]  Peter Linz,et al.  On the approximate computation of certain strongly singular integrals , 1985, Computing.

[14]  Xiaoping Zhang,et al.  The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application , 2010, Int. J. Comput. Math..

[15]  Qi‐Kui Du,et al.  Evaluations of certain hypersingular integrals on interval , 2001 .

[16]  D. Cvijovic Closed-form evaluation of some families of cotangent and cosecant integrals , 2008 .

[17]  U. Jin Choi,et al.  Improvement of the asymptotic behaviour of the Euler–Maclaurin formula for Cauchy principal value and Hadamard finite‐part integrals , 2004 .

[18]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[19]  Wei Lin,et al.  The natural integral equations of plane elasticity problem and its wavelet methods , 2004, Appl. Math. Comput..

[20]  Daisuke Koyama,et al.  Error estimates of the DtN finite element method for the exterior Helmholtz problem , 2007 .

[21]  D. F. Paget,et al.  The numerical evaluation of Hadamard finite-part integrals , 1981 .

[22]  Zheng-peng Wu,et al.  On the coupled NBEM and FEM for a class of nonlinear exterior Dirichlet problem in R2 , 2004 .

[23]  Weiwei Sun,et al.  The Superconvergence of the Composite Trapezoidal Rule for Hadamard Finite Part Integrals , 2005, Numerische Mathematik.

[24]  Chung-Yuen Hui,et al.  EVALUATIONS OF HYPERSINGULAR INTEGRALS USING GAUSSIAN QUADRATURE , 1999 .

[25]  George J. Tsamasphyros,et al.  Gauss quadrature rules for finite part integrals , 1990 .

[26]  Dehao Yu,et al.  The numerical computation of hypersingular integrals and its application in BEM , 1993 .

[27]  D. Elliott The Euler-Maclaurin formula revisited , 1998 .

[28]  Weiwei Sun,et al.  Interpolatory quadrature rules for Hadamard finite-part integrals and their superconvergence , 2007 .

[29]  Nilima Nigam,et al.  Error analysis of an enhanced DtN-FE method for exterior scattering problems , 2006, Numerische Mathematik.

[30]  Dehao Yu,et al.  Dirichlet--Neumann alternating algorithm based on the natural boundary reduction for time-dependent problems over an unbounded domain , 2003 .