Improving time series classification using Hidden Markov Models

Time series data are ubiquitous and being generated at an unprecedented speed and volume in many fields including finance, medicine, oil and gas industry and other business domains. Many techniques have been developed to analyze time series and understand the system that produces them. In this paper we propose a hybrid approach to improve the accuracy of time series classifiers by using Hidden Markov Models (HMM). The proposed approach is based on the principle of learning by mistakes. A HMM model is trained using the confusion matrices which are normally used to measure the classification accuracy. Misclassified samples are the basis of learning process. Our approach improves the classification accuracy by executing a second cycle of classification taking into account the temporal relations in the data. The objective of the proposed approach is to utilize the strengths of Hidden Markov Models (dealing with temporal data) to complement the weaknesses of other classification techniques. Consequently, instead of finding single isolated patterns, we focus on understanding the relationships between these patterns. The proposed approach was evaluated with a case study. The target of the case study was to classify real drilling data generated by rig sensors. Experimental evaluation proves the feasibility and effectiveness of the approach.