Synthesis and characterization of turbostratic carbons prepared by catalytic chemical vapour decomposition of acetylene

[1]  O. Hansen,et al.  Catalytic ammonia decomposition: miniaturized production of COx-free hydrogen for fuel cells , 2005 .

[2]  S. Yin,et al.  A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications , 2004 .

[3]  Dionisios G. Vlachos,et al.  Microreactor Modeling for Hydrogen Production from Ammonia Decomposition on Ruthenium , 2004 .

[4]  K. An,et al.  Narrow diameter distribution of singlewalled carbon nanotubes grown on Ni–MgO by thermal chemical vapor deposition , 2003 .

[5]  L. Duclaux,et al.  Synthesis of high quality multi-walled carbon nanotubes from the decomposition of acetylene on iron-group metal catalysts supported on MgO , 2002 .

[6]  H. Teng,et al.  Urea impregnation to enhance porosity development of carbons prepared from phenol-formaldehyde resins , 2002 .

[7]  D. Goodman,et al.  Ammonia Decomposition on Ir(100): From Ultrahigh Vacuum to Elevated Pressures , 2001 .

[8]  T. Gustafsson,et al.  Influence of carbon black and binder on Li-ion batteries , 2001 .

[9]  M. Narkis,et al.  Thermoelectric behavior (PTC) of carbon black‐containing TPX/UHMWPE and TPX/XL‐UHMWPE blends , 2001 .

[10]  D. Goodman,et al.  Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications , 2001 .

[11]  D. Goodman,et al.  Hydrogen Production via Catalytic Decomposition of Methane , 2001 .

[12]  M. Narkis,et al.  The interrelation between morphology, resistivity, and flow properties of carbon black-containing HIPS/EVA blends , 1999 .

[13]  Jim P. Zheng,et al.  Ruthenium Oxide‐Carbon Composite Electrodes for Electrochemical Capacitors , 1999 .

[14]  D. W. Goodman,et al.  Stepwise methane steam reforming: a route to CO-free hydrogen , 1999 .

[15]  R. Nuzzo,et al.  Carbon Support Effects on Bimetallic Pt−Ru Nanoparticles Formed from Molecular Precursors , 1999 .

[16]  E. Auer,et al.  Carbons as supports for industrial precious metal catalysts , 1998 .

[17]  V. Choudhary,et al.  Oxidative Conversion of Methane to Syngas over Nickel Supported on Commercial Low Surface Area Porous Catalyst Carriers Precoated with Alkaline and Rare Earth Oxides , 1997 .

[18]  Patrick Bertrand,et al.  Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells , 1996 .

[19]  George Tsagaropoulos,et al.  Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behavior of Filled Polymers. Similarities and Differences with Random Ionomers , 1995 .

[20]  Kamjou Mansour,et al.  Nonlinear optical properties of carbon-black suspensions (ink) , 1992 .

[21]  F. Beck,et al.  Electrodeposition of Paint in Carbon Black Filled Systems , 1987 .

[22]  Avrom I. Medalia,et al.  Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates , 1978 .

[23]  G. Kraus Reinforcement of elastomers by carbon black , 1978 .

[24]  James L White,et al.  The influence of carbon black on the extrusion characteristics and rheological properties of elastomers: Polybutadiene and butadiene–styrene copolymer , 1974 .

[25]  W. Slichter,et al.  Nuclear magnetic resonance study of rubber–carbon black interactions , 1971 .

[26]  B. Warren,et al.  An X‐Ray Study of Carbon Black , 1942 .

[27]  A. Chuvilin,et al.  Catalytic filamentous carbon: Structural and textural properties , 2003 .

[28]  T. Ohshima,et al.  Surface modification of carbon black by anodic oxidation and electrochemical characterization , 1996 .

[29]  D. Chung,et al.  Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lithium electrolytic cell , 1996 .

[30]  A. Medalia Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber , 1970 .