Rotating solutions and stability of parametric pendulum by perturbation method
暂无分享,去创建一个
Ekaterina Pavlovskaia | Marian Wiercigroch | Stefano Lenci | G. Rega | S. Lenci | M. Wiercigroch | E. Pavlovskaia | G. Rega
[1] K. Brueckner,et al. Advances in theoretical physics , 1965 .
[2] A. Zubrzycki,et al. The Global bifurcations that lead to Transient tumbling Chaos in a Parametrically Driven Pendulum , 2000, Int. J. Bifurc. Chaos.
[3] Wanda Szemplinska-Stupnicka,et al. The Oscillation-rotation attractors in the Forced Pendulum and their Peculiar Properties , 2002, Int. J. Bifurc. Chaos.
[4] U. Galvanetto,et al. SOME REMARKS ON THE NUMERICAL TIME INTEGRATION OF NON-LINEAR DYNAMICAL SYSTEMS , 2002 .
[5] Bernd Pompe,et al. Experiments on periodic and chaotic motions of a parametrically forced pendulum , 1985 .
[6] S. Bishop,et al. The use of manifold tangencies to predict orbits, bifurcations and estimate escape in driven systems , 1996 .
[7] G. Grüner,et al. Nonlinear Conductivity and Noise due to Charge-Density-Wave Depinning in NbSe3 , 1981 .
[8] Ali H. Nayfeh,et al. Dynamics and Control of Cranes: A Review , 2003 .
[9] Ekaterina Pavlovskaia,et al. Dynamic interactions between parametric pendulum and electro‐dynamical shaker , 2007 .
[10] Steven R. Bishop,et al. Rotating periodic orbits of the parametrically excited pendulum , 1995 .
[11] Matthew P. Cartmell,et al. Rotating orbits of a parametrically-excited pendulum , 2005 .
[12] Marian Wiercigroch,et al. Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum , 2006 .
[13] B. Koch,et al. Subharmonic and homoclinic bifurcations in a parametrically forced pendulum , 1985 .
[14] Starrett,et al. Control of a chaotic parametrically driven pendulum. , 1995, Physical review letters.
[15] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[16] Stefano Lenci,et al. Higher-order Melnikov functions for single-dof mechanical oscillators: Theoretical treatment and applications , 2004 .
[17] S. Shankar Sastry,et al. Dynamics of the forced Josephson junction circuit: The regions of chaos , 1985 .
[18] Steven R. Bishop,et al. Rotating solutions of the parametrically excited pendulum , 2003 .
[19] A. Nayfeh. Introduction To Perturbation Techniques , 1981 .
[20] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[21] R. Van Dooren. Chaos in a pendulum with forced horizontal support motion: a tutorial , 1996 .
[22] G. A. Baker,et al. THE THEORY AND APPLICATION OF THE PADE APPROXIMANT METHOD , 1964 .
[23] Z. J. Yang,et al. Experimental study of chaos in a driven pendulum , 1987 .
[24] Eugene I. Butikov. THE RIGID PENDULUM : AN ANTIQUE BUT EVERGREEN PHYSICAL MODEL , 1999 .