Effects of silica aerogel content on microstructural and mechanical properties of poly(methyl methacrylate)/silica aerogel dual-scale cellular foams processed in supercritical carbon dioxide

[1]  Q. Shen,et al.  Microstructure and electrical conductivity of CNTs/PMMA nanocomposite foams foaming by supercritical carbon dioxide , 2016, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[2]  D. Stojanović,et al.  The use of different alumina fillers for improvement of the mechanical properties of hybrid PMMA composites , 2015 .

[3]  Shanyu Zhao,et al.  Synthesis and thermal insulation performance of silica aerogel from recycled coal gangue by means of ambient pressure drying , 2015, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[4]  Xinguo Zheng,et al.  Mechanical properties and fracture behaviour of multilayer alumina composites , 2015, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[5]  H. Alijani,et al.  PMMA-grafted silica aerogel nanoparticles via in situ SR&NI ATRP: Grafting through approach , 2015 .

[6]  Quan Yang,et al.  Mechanical and dielectric properties of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions , 2015 .

[7]  M. Rodríguez-Pérez,et al.  Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties , 2015 .

[8]  J. Jiao,et al.  Effects of framework structure and coupling modification on the properties of mesoporous silica/poly(methyl methacrylate) composites , 2015 .

[9]  S. Nguyen,et al.  Advanced multifunctional graphene aerogel - Poly (methyl methacrylate) composites: Experiments and modeling , 2015 .

[10]  T. Pinnavaia,et al.  Effects of mesoporous silica particles on the emulsion polymerization of methyl methacrylate , 2014 .

[11]  H. Maleki,et al.  An overview on silica aerogels synthesis and different mechanical reinforcing strategies , 2014 .

[12]  Xiangmin Han,et al.  Polymer nanocomposite foams , 2013 .

[13]  Shangwen Zha,et al.  Microcellular foaming of plasticized thin PC sheet I. Effects of processing conditions , 2013, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[14]  Chenyi Wang,et al.  Synthesis, characterization and protonation study of novel poly(thioether imide)s based on aromatic heterocyclic diimide , 2013, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[15]  Martin Rohleder,et al.  Correlation between injection moulding processing parameters and mechanical properties of microcellular polycarbonate , 2012 .

[16]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[17]  Q. Shen,et al.  Foaming of CNTs/PMMA Nanocomposite with Supercritical Carbon Dioxide , 2012 .

[18]  L. Schadler,et al.  Controlling bubble density in MWNT/polymer nanocomposite foams by MWNT surface modification , 2012 .

[19]  A. Tsimpliaraki,et al.  The effect of surface chemistry and nanoclay loading on the microcellular structure of porous poly(d,l lactic acid) nanocomposites , 2011 .

[20]  L. Schadler,et al.  An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams , 2011 .

[21]  Soojin Park,et al.  Influence of GMA grafted MWNTs on physical and rheological properties of PMMA-based nanocomposites by in situ polymerization , 2011 .

[22]  I. Lázár,et al.  Integration of ground aerogel particles as chromatographic stationary phase into microchip. , 2011, Journal of chromatography. A.

[23]  P. Viot,et al.  Microcellular foaming of polymethylmethacrylate in a batch supercritical CO2 process: Effect of microstructure on compression behavior , 2010 .

[24]  Chuck Zhang,et al.  Synthesis and processing of PMMA carbon nanotube nanocomposite foams , 2010 .

[25]  L. Schadler,et al.  Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology , 2010 .

[26]  Giovanna Della Porta,et al.  Supercritical fluids processing of polymers for pharmaceutical and medical applications , 2009 .

[27]  Hongbing Lu,et al.  Cross-Linking 3D Assemblies of Nanoparticles into Mechanically Strong Aerogels by Surface-Initiated Free-Radical Polymerization , 2008 .

[28]  C. Panayiotou,et al.  Foaming of polymers with supercritical CO2: An experimental and theoretical study , 2007 .

[29]  E. Reverchon,et al.  Production of controlled polymeric foams by supercritical CO2 , 2007 .

[30]  Yiqun Liu,et al.  The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica , 2006 .

[31]  J. Yu,et al.  Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams , 2006 .

[32]  S. Bae,et al.  Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide , 2006 .

[33]  L. Schadler,et al.  Mechanical Behavior of Alumina/Poly(methyl methacrylate) Nanocomposites , 2004 .

[34]  J. E. Mark,et al.  Microcellular foams from polyethersulfone and polyphenylsulfone. Preparation and mechanical properties , 2002 .

[35]  Xiangmin Han,et al.  Continuous microcellular polystyrene foam extrusion with supercritical CO2 , 2002 .

[36]  Takashi Nakamura,et al.  Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate). , 2002, Journal of biomedical materials research.

[37]  N. Suh,et al.  A process for making microcellular thermoplastic parts , 1990 .

[38]  Jonathan S. Colton,et al.  Nucleation of microcellular foam: Theory and practice , 1987 .