Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information

Significance Dietary habits, especially meat consumption, represent a key aspect in the behavior and evolution of fossil hominin species. Here, we explore zinc (Zn) isotope ratios in tooth enamel of fossil mammals. We show discrimination between different trophic levels and demonstrate that Zn isotopes could prove useful in paleodietary studies of fossil hominin, or other mammalian species, to assess their consumption of animal versus plant resources. We also demonstrate the high preservation potential of pristine diet-related Zn isotope ratios, even under tropical conditions with poor collagen preservation, such as the studied depositional context in Southeast Asia. However, assessing the preservation of original δ66Zn values is required for each fossil site as diagenesis may vary across and even within taphonomic settings. Stable carbon and nitrogen isotope ratios of collagen from bone and dentin have frequently been used for dietary reconstruction, but this method is limited by protein preservation. Isotopes of the trace element zinc (Zn) in bioapatite constitute a promising proxy to infer dietary information from extant and extinct vertebrates. The 66Zn/64Zn ratio (expressed as δ66Zn value) shows an enrichment of the heavy isotope in mammals along each trophic step. However, preservation of diet-related δ66Zn values in fossil teeth has not been assessed yet. Here, we analyzed enamel of fossil teeth from the Late Pleistocene (38.4–13.5 ka) mammalian assemblage of the Tam Hay Marklot (THM) cave in northeastern Laos, to reconstruct the food web and assess the preservation of original δ66Zn values. Distinct enamel δ66Zn values of the fossil taxa (δ66Zncarnivore < δ66Znomnivore < δ66Znherbivore) according to their expected feeding habits were observed, with a trophic carnivore-herbivore spacing of +0.60‰ and omnivores having intermediate values. Zn and trace element concentration profiles similar to those of modern teeth also indicate minimal impact of diagenesis on the enamel. While further work is needed to explore preservation for settings with different taphonomic conditions, the diet-related δ66Zn values in fossil enamel from THM cave suggest an excellent long-term preservation potential, even under tropical conditions that are well known to be adverse for collagen preservation. Zinc isotopes could thus provide a new tool to assess the diet of fossil hominins and associated fauna, as well as trophic relationships in past food webs.

[1]  Namita Srivastava,et al.  The Machine‐Learning Approach , 2020, Machine Learning for iOS Developers.

[2]  C. Girard,et al.  Calcium stable isotopes place Devonian conodonts as first level consumers , 2019, Geochemical Perspectives Letters.

[3]  T. Cerling,et al.  Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals , 2018, Earth and Planetary Science Letters.

[4]  F. Demeter,et al.  Nam Lot (MIS 5) and Duoi U'Oi (MIS 4) Southeast Asian sites revisited: Zooarchaeological and isotopic evidences , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[5]  Klervia Jaouen What is our toolbox of analytical chemistry for exploring ancient hominin diets in the absence of organic preservation? , 2018, Quaternary Science Reviews.

[6]  H. Woodrow,et al.  : A Review of the , 2018 .

[7]  B. MacFadden,et al.  Body mass predicts isotope enrichment in herbivorous mammals , 2018, Proceedings of the Royal Society B: Biological Sciences.

[8]  Jason E. Laffoon,et al.  A bioavailable strontium isoscape for Western Europe: A machine learning approach , 2018, PloS one.

[9]  B. Nickel,et al.  Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations , 2018, Science.

[10]  J. Hublin,et al.  Tracing intensive fish and meat consumption using Zn isotope ratios: evidence from a historical Breton population (Rennes, France) , 2018, Scientific Reports.

[11]  J. Garrevoet,et al.  Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping , 2018, Journal of The Royal Society Interface.

[12]  J. Brůžek,et al.  Spatial distribution of trace element Ca-normalized ratios in primary and permanent human tooth enamel. , 2017, The Science of the total environment.

[13]  F. Demeter,et al.  Testing the savannah corridor hypothesis during MIS2: The Boh Dambang hyena site in southern Cambodia , 2017 .

[14]  W. Dittus,et al.  Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology , 2017, American journal of primatology.

[15]  P. Roberts,et al.  Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (∼36 to 3 ka) Sri Lanka. , 2017, Journal of human evolution.

[16]  V. Balter,et al.  Copper and zinc isotope ratios in human bone and enamel. , 2017, American journal of physical anthropology.

[17]  R. Evershed,et al.  Strontium concentration, radiogenic (87Sr/86Sr) and stable (δ88Sr) strontium isotope systematics in a controlled feeding study , 2017 .

[18]  H. Schielzeth,et al.  The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded , 2016, bioRxiv.

[19]  J. Rothman,et al.  Stable isotopic variation in tropical forest plants for applications in primatology , 2016, American journal of primatology.

[20]  S. Panha,et al.  The Middle Pleistocene vertebrate fauna from Khok Sung (Nakhon Ratchasima, Thailand): biochronological and paleobiogeographical implications , 2016, ZooKeys.

[21]  J. Hublin,et al.  Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya) , 2016, Scientific Reports.

[22]  M. Richards,et al.  Zinc Isotope Ratios as Indicators of Diet and Trophic Level in Arctic Marine Mammals , 2016, PloS one.

[23]  F. Brown,et al.  Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma , 2015, Proceedings of the National Academy of Sciences.

[24]  S. Cornu,et al.  Tracing contamination sources in soils with Cu and Zn isotopic ratios. , 2015, The Science of the total environment.

[25]  A. Alcolea,et al.  Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. , 2015, Archives of oral biology.

[26]  Priscia Oliva,et al.  Zn isotope fractionation in a pristine larch forest on permafrost-dominated soils in Central Siberia , 2015, Geochemical Transactions.

[27]  D. Norris,et al.  Experimental evidence shows no fractionation of strontium isotopes (87Sr/86Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science , 2015, Isotopes in environmental and health studies.

[28]  F. Demeter,et al.  Late Pleistocene mammalian assemblages of Southeast Asia: New dating, mortality profiles and evolution of the predator–prey relationships in an environmental context , 2015 .

[29]  A. Gledhill,et al.  Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka , 2015, Science.

[30]  J. Martin,et al.  Magnesium stable isotope ecology using mammal tooth enamel , 2014, Proceedings of the National Academy of Sciences.

[31]  B. Reynard,et al.  Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples , 2014 .

[32]  Y. Wang,et al.  Fossil Pongo from the Early Pleistocene Gigantopithecus fauna of Chongzuo, Guangxi, southern China , 2014 .

[33]  Reiko T. Kono,et al.  Changes in the composition of the Pleistocene primate fauna in southern China , 2014 .

[34]  M. Sambridge,et al.  Laser ablation U-series analysis of fossil bones and teeth , 2014 .

[35]  G. Parker,et al.  Isotopic characteristics of canopies in simulated leaf assemblages , 2014 .

[36]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[37]  J. Martin,et al.  Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains , 2014 .

[38]  D. J. Daegling,et al.  Stable isotope canopy effects for sympatric monkeys at Taï Forest, Côte d'Ivoire , 2013, Biology Letters.

[39]  V. Balter,et al.  Iron, copper and zinc isotopic fractionation up mammal trophic chains , 2013 .

[40]  A. Shaw,et al.  Heterogeneous distribution of natural zinc isotopes in mice. , 2013, Metallomics : integrated biometal science.

[41]  M. Kohn,et al.  Trace Element Concentrations in Teeth – A Modern Idaho Baseline with Implications for Archeometry, Forensics, and Palaeontology , 2013 .

[42]  D. Barr,et al.  Random effects structure for confirmatory hypothesis testing: Keep it maximal. , 2013, Journal of memory and language.

[43]  L. E. Wright Immigration to Tikal, Guatemala: Evidence from stable strontium and oxygen isotopes , 2012 .

[44]  I. Rodushkin,et al.  Isotopic analysis of the metabolically relevant transition metals Cu, Fe and Zn in human blood from vegetarians and omnivores using multi-collector ICP-mass spectrometry , 2012 .

[45]  T. Price,et al.  Isotopic Studies of Human Skeletal Remains from a Sixteenth to Seventeenth Century AD Churchyard in Campeche, Mexico , 2012, Current Anthropology.

[46]  W. Pestle,et al.  Bone collagen preservation in the tropics: A case study from ancient Puerto Rico , 2012 .

[47]  T. Sayavongkhamdy,et al.  Karst development, breccias history, and mammalian assemblages in Southeast Asia: A brief review , 2012 .

[48]  M. Clauss,et al.  The confounding effects of source isotopic heterogeneity on consumer–diet and tissue–tissue stable isotope relationships , 2012, Oecologia.

[49]  F. Demeter,et al.  The Middle Pleistocene mammalian fauna from Tam Hang karstic deposit, northern Laos: New data and evolutionary hypothesis , 2011 .

[50]  D. Günther,et al.  Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines , 2011 .

[51]  P. Oger,et al.  Fractionation of stable zinc isotopes in the zinc hyperaccumulator Arabidopsis halleri and nonaccumulator Arabidopsis petraea. , 2011, Environmental science & technology.

[52]  M. Richards,et al.  A Comparison of Bone Pretreatment Methods for AMS Dating of Samples >30,000 BP , 2011, Radiocarbon.

[53]  Andrew L Jackson,et al.  Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. , 2011, The Journal of animal ecology.

[54]  M. Kohn Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate , 2010, Proceedings of the National Academy of Sciences.

[55]  A. Anbar,et al.  Introducing δ88/86Sr analysis in archaeology: a demonstration of the utility of strontium isotope fractionation in paleodietary studies , 2010 .

[56]  H. Schielzeth,et al.  Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse , 2010, Behavioral Ecology and Sociobiology.

[57]  M. Kohn,et al.  The effect of tissue structure and soil chemistry on trace element uptake in fossils , 2010 .

[58]  F. Albarède,et al.  Bodily variability of zinc natural isotope abundances in sheep. , 2010, Rapid communications in mass spectrometry : RCM.

[59]  F. Albarède,et al.  Isotopic fractionation and transport mechanisms of Zn in plants , 2009 .

[60]  D. Chapman,et al.  A note on the food of Muntjac deer (Muntiacus reevesi) , 2009 .

[61]  P. Ditchfield,et al.  The oldest and longest enduring microlithic sequence in India: 35 000 years of modern human occupation and change at the Jwalapuram Locality 9 rockshelter , 2009, Antiquity.

[62]  M. Richards,et al.  Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti) , 2009 .

[63]  J. Lee-Thorp ON ISOTOPES AND OLD BONES , 2008 .

[64]  H. Schielzeth,et al.  Conclusions beyond support: overconfident estimates in mixed models , 2008, Behavioral ecology : official journal of the International Society for Behavioral Ecology.

[65]  M. Richards,et al.  RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2008; 22: 3187–3194 , 2022 .

[66]  F. Demeter,et al.  The Late Pleistocene Duoi U’Oi cave in northern Vietnam: palaeontology, sedimentology, taphonomy and palaeoenvironments , 2008 .

[67]  A. Nonell,et al.  Evidence for Zn isotopic fractionation at Merapi volcano , 2008 .

[68]  F. Vanhaecke,et al.  Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review , 2008, Analytical and bioanalytical chemistry.

[69]  I. Anderson,et al.  Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa , 2008 .

[70]  R. Hedges,et al.  Nitrogen isotopes and the trophic level of humans in archaeology , 2007 .

[71]  A. Nonell,et al.  Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon) , 2007 .

[72]  F. Albarède,et al.  Isotopic composition of zinc, copper, and iron in lunar samples , 2006 .

[73]  D. Guatelli‐Steinberg,et al.  Isotopic Evidence for Dietary Variability in the Early Hominin Paranthropus robustus , 2006, Science.

[74]  G. Henderson,et al.  Establishing the potential of Ca isotopes as proxy for consumption of dairy products , 2006 .

[75]  James E. Loudon,et al.  Do "savanna" chimpanzees consume C4 resources? , 2006, Journal of human evolution.

[76]  R. Bentley Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review , 2006 .

[77]  J. Lee-Thorp,et al.  Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements , 2006 .

[78]  B. Toman,et al.  New Guidelines for δ13C Measurements , 2006 .

[79]  John Krigbaum Reconstructing Human Subsistence in the West Mouth (Niah Cave, Sarawak) Burial Series Using Stable Isotopes of Carbon , 2005 .

[80]  G. Kirk,et al.  Isotopic discrimination of zinc in higher plants. , 2004, The New phytologist.

[81]  C. Williams,et al.  Diagenetic trends of dental tissues , 2004 .

[82]  John Krigbaum Neolithic subsistence patterns in northern Borneo reconstructed with stable carbon isotopes of enamel , 2003 .

[83]  Antonio Nanci,et al.  Ten Cate's Oral Histology: Development, Structure, and Function , 2003 .

[84]  F. Albarède,et al.  Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka , 2003 .

[85]  A. Pike,et al.  238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS , 2003 .

[86]  R. DeFries,et al.  Global distribution of C3 and C4 vegetation: Carbon cycle implications , 2003 .

[87]  Eric R. Ziegel,et al.  An Introduction to Generalized Linear Models , 2002, Technometrics.

[88]  Robert E. M. Hedges,et al.  Bone diagenesis: an overview of processes , 2002 .

[89]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[90]  M. Balasse Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra‐tooth sequential sampling , 2002 .

[91]  P. Pettitt,et al.  Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[92]  B. Barreiro,et al.  Differential diagenesis of strontium in archaeological human dental tissues , 2000 .

[93]  F. Albarède,et al.  Abundance of zinc isotopes as a marine biogeochemical tracer , 2000 .

[94]  B. Lönnerdal,et al.  Dietary factors influencing zinc absorption. , 2000, The Journal of nutrition.

[95]  H. Bocherens,et al.  Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate , 2000, Paleobiology.

[96]  J. Kelly Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology , 2000 .

[97]  M. Kohn,et al.  Altered states: effects of diagenesis on fossil tooth chemistry , 1999 .

[98]  K. M. Lee,et al.  Use of laser ablation inductively coupled plasma mass spectrometry to provide element versus time profiles in teeth , 1999 .

[99]  T. Cerling,et al.  Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies , 1999, Oecologia.

[100]  W. McDowell,et al.  Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests , 1999 .

[101]  J. Lee-Thorp,et al.  Oxygen Isotopes in Enamel Carbonate and their Ecological Significance , 1999 .

[102]  G. J. Klinken,et al.  Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements , 1999 .

[103]  R. Hedges,et al.  Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe , 1999 .

[104]  Francis Albarède,et al.  Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry , 1999 .

[105]  W. Clyde,et al.  Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables , 1998 .

[106]  P. Koch,et al.  ISOTOPIC RECONSTRUCTION OF PAST CONTINENTAL ENVIRONMENTS , 1998 .

[107]  P. D. P. Taylor,et al.  Isotopic compositions of the elements 1997 (Technical Report) , 1998 .

[108]  M. Kohn Predicting animal δ18O: Accounting for diet and physiological adaptation , 1996 .

[109]  G. Morin,et al.  Assessment of archaeological bone and dentine preservation from Lazaret Cave (Middle Pleistocene) in France , 1996 .

[110]  M. Kohn,et al.  Herbivore tooth oxygen isotope compositions: Effects of diet and physiology , 1996 .

[111]  J. Berg,et al.  The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc , 1996, Science.

[112]  J. Bryant,et al.  A MODEL OF OXYGEN ISOTOPE FRACTIONATION IN BODY WATER OF LARGE MAMMALS , 1995 .

[113]  H. Bocherens,et al.  Microstructural and geochemical investigations on Late Cretaceous archosaur teeth from Alberta, Canada , 1994 .

[114]  Yang Wang,et al.  A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes , 1994 .

[115]  J. Bryant,et al.  Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate , 1994 .

[116]  S. Ambrose Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs , 1991 .

[117]  J. Lee-Thorp,et al.  Aspects of the Chemistry of Modern and Fossil Biological Apatites , 1991 .

[118]  E. Medina,et al.  The canopy effect, carbon isotope ratios and foodwebs in Amazonia , 1991 .

[119]  T. Spencer,et al.  Stratigraphy and Chronology of Late Pleistocene Reefs in the Southern Cook Islands, South Pacific , 1991, Quaternary Research.

[120]  A. Chivas,et al.  Oxygen isotope composition of the bone phosphate of Australian kangaroos: Potential as a palaeoenvironmental recorder , 1990 .

[121]  Stanley H. Ambrose,et al.  Preparation and characterization of bone and tooth collagen for isotopic analysis , 1990 .

[122]  C. Kendall,et al.  Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water , 1990 .

[123]  F. Albarède,et al.  Ion probe measurement of rare earth elements in biogenic phosphates , 1989 .

[124]  J. Sealy,et al.  Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet , 1989 .

[125]  S. Mulkey,et al.  Oxygen isotope ratio stratification in a tropical moist forest , 1989, Oecologia.

[126]  M. O'Leary,et al.  Carbon Isotopes in PhotosynthesisFractionation techniques may reveal new aspects of carbon dynamics in plants , 1988 .

[127]  C. Field,et al.  Leaf carbon isotope ratios of plants from a subtropical monsoon forest , 1987, Oecologia.

[128]  C. Field,et al.  Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline , 1986, Oecologia.

[129]  H. Friedli,et al.  Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries , 1986, Nature.

[130]  E. Cuevas,et al.  Profiles of CO2 concentration and δ13C values in tropical rain forests of the upper Rio Negro Basin, Venezuela , 1986, Journal of Tropical Ecology.

[131]  Jonathon E. Ericson,et al.  Strontium isotope characterization in the study of prehistoric human ecology , 1985 .

[132]  R. Cousins Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. , 1985, Physiological reviews.

[133]  M. Horowitz,et al.  Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water , 1984 .

[134]  M. J. Deniro,et al.  Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals , 1984 .

[135]  A. Longinelli Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? , 1984 .

[136]  H. Krueger,et al.  Carbon isotope analysis of separate chemical phases in modern and fossil bone , 1981, Nature.

[137]  J. Vogel Isotopic assessment of the dietary habits of ungulates , 1978 .

[138]  M. J. Deniro,et al.  Influence of Diet On the Distribtion of Nitrogen Isotopes in Animals , 1978 .

[139]  R. Longin New Method of Collagen Extraction for Radiocarbon Dating , 1971, Nature.

[140]  S. Epstein,et al.  Two Categories of 13C/12C Ratios for Higher Plants , 1971 .

[141]  E. J. Dasch,et al.  Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks , 1969 .

[142]  F. A. Smith,et al.  Distribution of strontium in teeth from different geographic areas. , 1958, Journal of the American Dental Association.

[143]  K. Britton,et al.  Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities , 2019, Earth-Science Reviews.

[144]  T. Fujii,et al.  The Isotope Geochemistry of Zinc and Copper , 2017 .

[145]  M. Kuefer The Encyclopedia Of Mammals , 2016 .

[146]  F. Vanhaecke,et al.  Evidence for a possible dietary effect on the isotopic composition of Zn in blood via isotopic analysis of food products by multi-collector ICP-mass spectrometry. , 2014, Metallomics : integrated biometal science.

[147]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[148]  C. Máguas,et al.  Stable Isotope Analysis , 2013 .

[149]  By W. Dansga,et al.  Stable isotopes in precipitation , 2010 .

[150]  A. Geer Muntiacus muntjak, the Indian muntjac , 2008 .

[151]  D. McCarroll,et al.  ISOTOPES IN TREE RINGS , 2006 .

[152]  D. J. Weers A taxonomic revision of the Pleistocene Hystrix (Hystricidae, Rodentia) from Eurasia with notes on the evolution of the family , 2005 .

[153]  M. Schoeninger,et al.  Isotopic Alteration of Mammalian Tooth Enamel , 2003 .

[154]  N. Tuross,et al.  Trace elements in recent and fossil bone apatite , 2002 .

[155]  M. Kohn,et al.  Stable isotope compositions of biological apatite , 2002 .

[156]  J. Luck,et al.  Pb, Zn and Cu isotopic variations and trace elements in rain. , 1999 .

[157]  Christelle Tougard Les faunes de grands mammifères du Pléistocène moyen terminal de Thai͏̈lande dans leur cadre phylogénétique, paléoécologique et biochronologique , 1998 .

[158]  J. Ehleringer,et al.  CO2 concentration profiles, and carbon and oxygen isotopes in C3, and C4 crop canopies , 1998 .

[159]  G. Åberg The use of natural strontium isotopes as tracers in environmental studies , 1995 .

[160]  J. Hörandel,et al.  COSMIC RAYS FROM THE KNEE TO THE SECOND , 2007 .

[161]  B. Vallee,et al.  The biochemical basis of zinc physiology. , 1993, Physiological reviews.

[162]  W. C. Graustein 87Sr/86Sr Ratios Measure the Sources and Flow of Strontium in Terrestrial Ecosystems , 1989 .

[163]  W. Erdelen Forest ecosystems and nature conservation in Sri Lanka , 1988 .

[164]  H. Krueger,et al.  Models For Carbon Isotope Fractionation Between Diet and Bone , 1984 .

[165]  J. Gosz,et al.  Using Strontium Isotope Ratios to Estimate Inputs to Ecosystems , 1983 .

[166]  R. Salminen,et al.  The concentrations of Zn and Mg in human enamel and dentine related to age and their concentrations in the soil. , 1981, Archives of oral biology.

[167]  R. Hurst,et al.  Strontium isotopes as tracers of airborne fly ash from coal-fired power plants , 1981 .

[168]  R. Nowak,et al.  Walker's mammals of the world , 1968 .

[169]  Central Asiatic Expeditions,et al.  Pleistocene mammals from the limestone fissures of Szechwan, China. Bulletin of the AMNH ; v. 102, article 1 , 1953 .