CO Gas-free Intramolecular Cyclocarbonylation Reactions of Haloarenes Having a C-Nucleophile through CO-Relay between Rhodium and Palladium.

We describe transfer carbonylation reactions of 2-bromoarenes that contain a carbon-nucleophile using aldehydes as a substitute for CO, leading to the formation of indanone derivatives. The transformation proceeds efficiently under Rh(I)/Pd(0)-hybrid catalytic conditions consisting of two discrete transition metals, rhodium and palladium, which catalyze the decarbonylation of aldehydes and the subsequent carbonylation of bromoarenes using the resulting carbonyl moiety, respectively. The majority of the abstracted CO is transferred directly to the product via a CO-relay process from rhodium to palladium.

[1]  M. Clarke,et al.  CO‐Free Enantioselective Hydroformylation of Functionalised Alkenes: Using a Dual Catalyst System to Give Improved Selectivity and Yield , 2019, Advanced Synthesis & Catalysis.

[2]  Xiao‐Feng Wu,et al.  Cobalt-Catalyzed Carbonylative Synthesis of Phthalimides from N-(pyridin-2-ylmethyl)benzamides with TFBen as the CO Source. , 2019, The Journal of organic chemistry.

[3]  B. Bhanage,et al.  Dppf‐Ligated Palladium Complex as an Efficient Catalyst for the Synthesis of Biaryl Ketones Using Co 2 (CO) 8 as a C1 Source with High TON and TOF , 2019, ChemistrySelect.

[4]  Shaifali,et al.  Synthesis of α,β-alkynyl ketones via the nickel catalysed carbonylative Sonogashira reaction using oxalic acid as a sustainable C1 source. , 2019, Organic & biomolecular chemistry.

[5]  Fangning Xu,et al.  Transition‐Metal‐Free Carbonylative Suzuki‐Miyaura Reactions of Aryl Iodides with Arylboronic Acids Using N ‐Formylsaccharin as CO Surrogate , 2019, Advanced Synthesis & Catalysis.

[6]  Greeshma Gopalan,et al.  Chloroform as a CO surrogate: applications and recent developments. , 2019, Organic & biomolecular chemistry.

[7]  Lin Chen,et al.  Formates plus triazabicyclodecene (TBD): an efficient platform for non-gaseous carbonylation and unexpected hydrogenation , 2019, Organic Chemistry Frontiers.

[8]  L. Kollár,et al.  Palladium catalyzed carbonylations of alkenyl halides with formic acid to get corresponding α,β-unsaturated carboxylic acids and esters , 2019, Molecular Catalysis.

[9]  Xiao‐Feng Wu,et al.  The Chemistry of CO: Carbonylation , 2019, Chem.

[10]  Fu‐Peng Wu,et al.  First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. , 2019, Chemical reviews.

[11]  Zhiping Yin,et al.  Transition-Metal-Catalyzed Carbonylative Synthesis and Functionalization of Heterocycles , 2019, Chinese Journal of Organic Chemistry.

[12]  K. Kakiuchi,et al.  The Use of Formaldehyde in the Rhodium-Catalyzed Linear-Selective Hydroformylation of Vinylheteroarenes , 2019, HETEROCYCLES.

[13]  M. Larhed,et al.  Palladium-Catalyzed Molybdenum Hexacarbonyl-Mediated Gas-Free Carbonylative Reactions , 2018, Synlett.

[14]  Wei Sun,et al.  Recent Advances in Homogeneous Carbonylation Using CO2 as CO Surrogate , 2018 .

[15]  Zheng Xu,et al.  Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as non-gaseous C1 source , 2017 .

[16]  T. Skrydstrup,et al.  The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions. , 2016, Accounts of chemical research.

[17]  Xiao‐Feng Wu Transition Metal-Catalyzed Heterocycle Synthesis via CH Activation: Wu/Transition Metal-Catalyzed Heterocycle Synthesis via CH Activation , 2016 .

[18]  B. Bhanage,et al.  Recent advances in the transition metal catalyzed carbonylation of alkynes, arenes and aryl halides using CO surrogates , 2015 .

[19]  K. Kakiuchi,et al.  Asymmetric Pauson–Khand-type reactions of 1,6-enynes using formaldehyde as a carbonyl source by cooperative dual rhodium catalysis , 2015 .

[20]  K. Manabe,et al.  Concise synthesis of cyclic carbonyl compounds from haloarenes using phenyl formate as the carbonyl source. , 2015, Chemical communications.

[21]  K. Manabe,et al.  Formic Acid Derivatives as Practical Carbon Monoxide Surrogates for Metal-Catalyzed Carbonylation Reactions , 2014 .

[22]  M. Beller,et al.  Carbonylierungen von Alkenen mit CO‐Alternativen , 2014 .

[23]  M. Beller,et al.  Carbonylations of alkenes with CO surrogates. , 2014, Angewandte Chemie.

[24]  K. Kakiuchi,et al.  Rhodium(I)-Catalyzed Carbonylative Arylation of Alkynes with Arylboronic Acids Using Formaldehyde as a Carbonyl Source , 2014, Synlett.

[25]  H. Neumann,et al.  Synthesis of heterocycles via palladium-catalyzed carbonylations. , 2013, Chemical reviews.

[26]  M. Beller,et al.  Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C-X Bonds , 2013 .

[27]  A. Modak,et al.  A general and efficient aldehyde decarbonylation reaction by using a palladium catalyst. , 2012, Chemical communications.

[28]  M. Larhed,et al.  Molybdenum Hexacarbonyl MediatedCO Gas-Free Carbonylative Reactions , 2012 .

[29]  K. Kakiuchi,et al.  Highly Linear-Selective Hydroformylation of 1-Alkenes using Formaldehyde as a Syngas Substitute , 2010 .

[30]  K. Kakiuchi,et al.  Rh(I)-catalyzed CO gas-free carbonylative cyclization reactions of alkynes with 2-bromophenylboronic acids using formaldehyde. , 2009, Organic letters.

[31]  Tetsuaki Fujihara,et al.  The iridium-catalyzed decarbonylation of aldehydes under mild conditions. , 2008, Chemical communications.

[32]  R. Madsen,et al.  The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: a combined experimental and theoretical study. , 2008, Journal of the American Chemical Society.

[33]  L. Kollár Modern carbonylation methods , 2008 .

[34]  Erick M. Carreira,et al.  Enantioselektive Synthese von 1,1‐Diarylethanen: Aldehyde als entfernbare Steuerungsgruppen in der asymmetrischen Synthese , 2007 .

[35]  S. P. Andrews,et al.  Enantioselective preparation of 1,1-diarylethanes: aldehydes as removable steering groups for asymmetric synthesis. , 2007, Angewandte Chemie.

[36]  K. Kakiuchi,et al.  Rh(I)-catalyzed CO gas-free carbonylative cyclization of organic halides with tethered nucleophiles using aldehydes as a substitute for carbon monoxide , 2007 .

[37]  M. Beller Catalytic carbonylation reactions , 2006 .

[38]  Tsumoru Morimoto,et al.  Katalytische Carbonylierungen: kein Bedarf an Kohlenmonoxid , 2004 .

[39]  K. Kakiuchi,et al.  Evolution of carbonylation catalysis: no need for carbon monoxide. , 2004, Angewandte Chemie.

[40]  Sukbok Chang,et al.  Ru-catalyzed hydroamidation of alkenes and cooperative aminocarboxylation procedure with chelating formamide. , 2003, Organic letters.

[41]  Chongmok Lee,et al.  Chelation-accelerated sequential decarbonylation of formate and alkoxycarbonylation of aryl halides using a combined Ru and Pd catalyst. , 2003, The Journal of organic chemistry.

[42]  K. Takagi,et al.  Catalytic Pauson-Khand-type reaction using aldehydes as a CO source. , 2002, Organic letters.

[43]  K. Kakiuchi,et al.  CO-transfer carbonylation reactions. A catalytic Pauson-Khand-type reaction of enynes with aldehydes as a source of carbon monoxide. , 2002, Journal of the American Chemical Society.

[44]  H. Makabe,et al.  CATALYTIC GENERATION AND TRAPPING OF ACYLMETALS CONTAINING NI AND CU WITH ENOLATES , 1998 .

[45]  J. Tour,et al.  Palladium-catalyzed carbonylative cyclization via trapping of acylpalladium derivatives with internal enolates. Its scope and factors affecting the C-to-O ratio , 1994 .

[46]  E. Negishi,et al.  Carbonylative cyclization via intramolecular trapping of acylmetal derivatives by carbon nucleophiles catalyzed by late transition metals , 1989 .

[47]  F. Calderazzo Synthetic and Mechanistic Aspects of Inorganic Insertion Reactions. Insertion of Carbon Monoxide , 1977 .

[48]  F. Calderazzo Synthetische und mechanistische Aspekte anorganischer Insertionsreaktionen. Insertion von Kohlenmonoxid , 1977 .

[49]  P. Garrou,et al.  The mechanism of carbonylation of halo(bis ligand)organoplatinum(II), -palladium(II), and -nickel(II) complexes , 1976 .

[50]  J. Tsuji,et al.  Organic syntheses by means of noble metal compounds XXI. Decarbonylation of aldehydes using rhodium complex , 1965 .