Abbreviated Title : Reduced Glut 1 in retinal neurons mitigates DR 4 5

[1]  Zhipeng You,et al.  Forskolin attenuates retinal inflammation in diabetic mice , 2017, Molecular medicine reports.

[2]  C. Sabanayagam Epidemiology of diabetic retinopathy, diabetic macular edema and vision loss due to diabetes , 2016 .

[3]  T. Kern,et al.  Photoreceptor Cells Produce Inflammatory Mediators That Contribute to Endothelial Cell Death in Diabetes , 2016, Investigative ophthalmology & visual science.

[4]  M. Bearse,et al.  Multifocal Electroretinography in Diabetic Retinopathy and Diabetic Macular Edema , 2014, Current Diabetes Reports.

[5]  P. Thulé,et al.  Early visual deficits in streptozotocin-induced diabetic long evans rats. , 2013, Investigative ophthalmology & visual science.

[6]  T. Wong,et al.  Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals , 2012, Disease Models & Mechanisms.

[7]  S. Baker,et al.  Facilitative glucose transporter Glut1 is actively excluded from rod outer segments , 2010, Journal of Cell Science.

[8]  Gordon L. Fain,et al.  ATP Consumption by Mammalian Rod Photoreceptors in Darkness and in Light , 2008, Current Biology.

[9]  M. Schneck,et al.  The fast oscillation of the EOG in diabetes with and without mild retinopathy , 2008, Documenta Ophthalmologica.

[10]  A. Hennig,et al.  Regulation of photoreceptor gene expression by Crx-associated transcription factor network , 2008, Brain Research.

[11]  M. Lorenzi The Polyol Pathway as a Mechanism for Diabetic Retinopathy: Attractive, Elusive, and Resilient , 2007, Experimental diabetes research.

[12]  Y. Ido Pyridine nucleotide redox abnormalities in diabetes. , 2007, Antioxidants & redox signaling.

[13]  Michael Brownlee,et al.  The pathobiology of diabetic complications: a unifying mechanism. , 2005, Diabetes.

[14]  T. Kern,et al.  Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. , 2003, Free radical biology & medicine.

[15]  C. Gerhardinger,et al.  A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. , 2003, Diabetes.

[16]  C. Cepko,et al.  The Mouse Crx 5′-Upstream Transgene Sequence Directs Cell-Specific and Developmentally Regulated Expression in Retinal Photoreceptor Cells , 2002, The Journal of Neuroscience.

[17]  M. Stevens,et al.  Diabetes-Induced Changes in Retinal NAD-Redox Status , 2001, Pharmacology.

[18]  T. Nishikawa,et al.  The missing link: a single unifying mechanism for diabetic complications. , 2000, Kidney international. Supplement.

[19]  C. Cepko,et al.  Crx, a Novel otx-like Homeobox Gene, Shows Photoreceptor-Specific Expression and Regulates Photoreceptor Differentiation , 1997, Cell.

[20]  L. Rizzolo Polarity and the development of the outer blood-retinal barrier. , 1997, Histology and histopathology.

[21]  B. Glasgow,et al.  GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. , 1994, Investigative ophthalmology & visual science.

[22]  J. Nyengaard,et al.  Hyperglycemic Pseudohypoxia and Diabetic Complications , 1993, Diabetes.

[23]  J. Baynes Role of Oxidative Stress in Development of Complications in Diabetes , 1991, Diabetes.

[24]  M. Palta,et al.  Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. , 1987, Archives of ophthalmology.

[25]  J. Kinoshita,et al.  Sorbitol pathway in diabetic and galactosemic rat lens , 1974 .

[26]  K. Gabbay The sorbitol pathway and the complications of diabetes. , 1973, The New England journal of medicine.

[27]  T. Sano,et al.  [Diabetic retinopathy]. , 2001, Nihon rinsho. Japanese journal of clinical medicine.

[28]  P. Beard Survival of Death , 1972 .

[29]  M. Brownlee Insight Review Articles , 2022 .