Time-dependent shortest paths through a fixed sequence of nodes: application to a travel planning problem

In this paper, we introduce a travel planning problem which is solved by computing time-dependent shortest paths through a fixed sequence of nodes. Given a predetermined itinerary, our travel planning problem consists in finding the best travel plan, involving planes and hotels, based on the traveler's preferences. Our time-dependent framework therefore models plane flights, hotels, stays in each city as well as global time constraints. Given the large size of time-dependent networks, an exact decomposition algorithm is devised to solve instances of realistic size in reasonable computation times.

[1]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[2]  Ismaïl Chabini,et al.  Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks , 2002, IEEE Trans. Intell. Transp. Syst..

[3]  Byong-Hun Ahn,et al.  Vehicle-routeing with Time Windows and Time-varying Congestion , 1991 .

[4]  K. Cooke,et al.  The shortest route through a network with time-dependent internodal transit times , 1966 .

[5]  Robert L. Smith,et al.  Fastest Paths in Time-dependent Networks for Intelligent Vehicle-Highway Systems Application , 1993, J. Intell. Transp. Syst..

[6]  H. Safer Fast approximation schemes for multi-criteria combinatorial optimization , 1992 .

[7]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[8]  S. Pallottino,et al.  Shortest Path Algorithms in Transportation models: classical and innovative aspects , 1997 .

[9]  Teodor Gabriel Crainic The On-Demand Tourist Paths Problem , 2005 .

[10]  Arthur Warburton,et al.  Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems , 1987, Oper. Res..

[11]  Hani S. Mahmassani,et al.  Time dependent, shortest-path algorithm for real-time intelligent vehicle highway system applications , 1993 .

[12]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[13]  Jean-François Bérubé,et al.  Planification pour agents dans un environnement dynamique et incertain , 2003 .

[14]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[15]  Chak-Kuen Wong,et al.  Time-varying shortest path problems with constraints , 1997, Networks.

[16]  Ariel Orda,et al.  Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length , 1990, JACM.

[17]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[18]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[19]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[20]  RaphaelBertram,et al.  Correction to "A Formal Basis for the Heuristic Determination of Minimum Cost Paths" , 1972 .

[21]  Ariel Orda,et al.  Minimum weight paths in time-dependent networks , 1991, Networks.

[22]  I. Murthy,et al.  A parametric approach to solving bicriterion shortest path problems , 1991 .

[23]  Jeffrey Scott Vitter,et al.  Shortest paths in euclidean graphs , 2005, Algorithmica.