The Jamiołkowski Isomorphism and a Simplified Proof for the Correspondence Between Vectors Having Schmidt Number k and k-Positive Maps
暂无分享,去创建一个
[1] M. Lewenstein,et al. Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.
[2] L. Clarisse. Characterization of distillability of entanglement in terms of positive maps , 2004, quant-ph/0403073.
[3] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[4] C. Adami,et al. Reduction criterion for separability , 1999 .
[5] M. Horodecki,et al. Reduction criterion of separability and limits for a class of distillation protocols , 1999 .
[6] D. Salgado,et al. A Simple Proof of the Jamiołkowski Criterion for Complete Positivity of Linear Maps , 2005, Open Syst. Inf. Dyn..
[7] P. Horodecki,et al. Schmidt number for density matrices , 1999, quant-ph/9911117.
[8] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[9] J. Pillis. Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .
[10] Man-Duen Choi,et al. Positive Linear Maps on C*-Algebras , 1972, Canadian Journal of Mathematics.
[11] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[12] G. Lindblad. Completely positive maps and entropy inequalities , 1975 .
[13] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.