A Systematic Study of Feature Selection Methods for Learning to Rank Algorithms

[1]  Raffaele Perego,et al.  Fast Feature Selection for Learning to Rank , 2016, ICTIR.

[2]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[3]  Thierson Couto,et al.  Incorporating Risk-Sensitiveness into Feature Selection for Learning to Rank , 2016, CIKM.

[4]  Feng Pan,et al.  Feature selection for ranking using boosted trees , 2009, CIKM.

[5]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[6]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[7]  Josiane Mothe,et al.  Nonconvex Regularizations for Feature Selection in Ranking With Sparse SVM , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[8]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[9]  Paolo Rosso,et al.  Expected Divergence Based Feature Selection for Learning to Rank , 2012, COLING.

[10]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[11]  Yong Tang,et al.  FSMRank: Feature Selection Algorithm for Learning to Rank , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[12]  Jie Wu,et al.  Sparse Learning-to-Rank via an Efficient Primal-Dual Algorithm , 2013, IEEE Transactions on Computers.

[13]  Tao Qin,et al.  Robust sparse rank learning for non-smooth ranking measures , 2009, SIGIR.

[14]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[15]  Yong Tang,et al.  Efficient gradient descent algorithm for sparse models with application in learning-to-rank , 2013, Knowl. Based Syst..

[16]  Qiang Wu,et al.  Adapting boosting for information retrieval measures , 2010, Information Retrieval.

[17]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[18]  Qinghua Zheng,et al.  Preference Learning to Rank with Sparse Bayesian , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[19]  Yiqun Liu,et al.  Hierarchical feature selection for ranking , 2010, WWW '10.

[20]  Ferat Sahin,et al.  A survey on feature selection methods , 2014, Comput. Electr. Eng..

[21]  Vadim Mottl,et al.  A Bayesian Approach to Sparse Learning-to-Rank for Search Engine Optimization , 2015, MLDM.