Gradients in planarian regeneration and homeostasis.

Planarian regeneration was one of the first models in which the gradient concept was developed. Morphological studies based on the analysis of the regeneration rates of planarian fragments from different body regions, the generation of heteromorphoses, and experiments of tissue transplantation led T.H. Morgan (1901) and C.M Child (1911) to postulate different kinds of gradients responsible for the regenerative process in these highly plastic animals. However, after a century of research, the role of morphogens in planarian regeneration has yet to be demonstrated. This may change soon, as the sequencing of the planarian genome and the possibility of performing gene functional analysis by RNA interference (RNAi) have led to the isolation of elements of the bone morphogenetic protein (BMP), Wnt, and fibroblast growth factor (FGF) pathways that control patterning and axial polarity during planarian regeneration and homeostasis. Here, we discuss whether the actions of these molecules could be based on morphogenetic gradients.

[1]  Jochen C. Rink,et al.  β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis , 2008, Science.

[2]  E. Saló,et al.  Gtwnt-5 a member of the wnt family expressed in a subpopulation of the nervous system of the planarian Girardia tigrina. , 2003, Gene expression patterns : GEP.

[3]  Teresa Adell,et al.  Smed-Evi/Wntless is required for β-catenin-dependent and -independent processes during planarian regeneration , 2009, Development.

[4]  N. Blackstone Charles Manning Child (1869-1954): the past, present, and future of metabolic signaling. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[5]  Marta Ibañes,et al.  Theoretical and experimental approaches to understand morphogen gradients , 2008, Molecular systems biology.

[6]  Michael Levin,et al.  Mathematical model of morphogen electrophoresis through gap junctions , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[7]  J. Huxley,et al.  The elements of experimental embryology , 1934 .

[8]  J. Slack Morphogenetic gradients — past and present , 1987 .

[9]  L. Holland Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. , 2002, Developmental biology.

[10]  E. Saló,et al.  The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. , 2007, Developmental biology.

[11]  R. Flickinger,et al.  The role of DNA synthesis in the determination of axial polarity of regenerating planarians. , 1966, The Biological bulletin.

[12]  Kazuho Ikeo,et al.  FGFR-related gene nou-darake restricts brain tissues to the head region of planarians , 2002, Nature.

[13]  M. Martindale,et al.  An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation , 2003, Nature.

[14]  Adam L. Bermange,et al.  BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration , 2007, Development.

[15]  K. Agata,et al.  Wnt signaling is required for antero-posterior patterning of the planarian brain. , 2007, Developmental biology.

[16]  D. McClay,et al.  The canonical Wnt pathway in embryonic axis polarity. , 2006, Seminars in cell & developmental biology.

[17]  Y. Kawakami,et al.  Cell lineage transport: a mechanism for molecular gradient formation , 2006, Molecular systems biology.

[18]  Kentaro Kato,et al.  Molecular Cloning of Bone Morphogenetic Protein (BMP) Gene from the Planarian Dugesia japonica , 1998 .

[19]  P. Reddien,et al.  Fundamentals of planarian regeneration. , 2004, Annual review of cell and developmental biology.

[20]  T. H. Morgan,et al.  Experimental studies of the regeneration of Planaria maculata , 2015, Roux's archives of developmental biology.

[21]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[22]  H. Schaller,et al.  Separation and specificity of action of four morphogens from hydra , 1979, Wilhelm Roux's archives of developmental biology.

[23]  E. D. De Robertis,et al.  Dorsal-ventral patterning and neural induction in Xenopus embryos. , 2004, Annual review of cell and developmental biology.

[24]  D. McClay,et al.  Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. , 1999, Development.

[25]  Michael Levin,et al.  smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis , 2007, Development.

[26]  H. Meinhardt,et al.  Space-dependent cell determination under the control of morphogen gradient. , 1978, Journal of theoretical biology.

[27]  C. Lange,et al.  Characterization of an organ-specific differentiator substance in the planarian Dugesia etrusca. , 1977, Journal of embryology and experimental morphology.

[28]  par Théodore Lender Recherches expérimentales sur la nature et les propriétés de l'inducteur de la régénération des yeux de la planaire Polycelis nigra , 1956 .

[29]  S. Cohen,et al.  Wingless gradient formation in the Drosophila wing , 2000, Current Biology.

[30]  Teresa Adell,et al.  Silencing of Smed-βcatenin1 generates radial-like hypercephalized planarians , 2008, Development.

[31]  E. Saló The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  H. Meinhardt,et al.  Applications of a theory of biological pattern formation based on lateral inhibition. , 1974, Journal of cell science.

[33]  Cyrille Alexandre,et al.  The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos , 2000, Current Biology.

[34]  A. S. Alvarado Planarian Regeneration: Its End Is Its Beginning , 2006, Cell.

[35]  Michael Levin,et al.  Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. , 2005, Developmental biology.

[36]  C. M. Child Studies on the dynamics of morphogenesis and inheritance in experimental reproduction , 1913, Archiv für Entwicklungsmechanik der Organismen.

[37]  J. Baguñá,et al.  Regeneration in planarians and other worms: New findings, new tools, and new perspectives. , 2002, The Journal of experimental zoology.

[38]  L Wolpert,et al.  Thresholds in development. , 1977, Journal of theoretical biology.

[39]  E. Saló,et al.  Stem cells and regeneration in planarians. , 2008, Frontiers in bioscience : a journal and virtual library.

[40]  E. Saló,et al.  Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. , 2009, Gene expression patterns : GEP.

[41]  James Rawlins Johnson,et al.  Observations on the genus planaria , 1815 .

[42]  K. Agata,et al.  Brain regeneration from pluripotent stem cells in planarian , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  H. Clevers,et al.  Wnt signalling in stem cells and cancer , 2005, Nature.

[44]  Hidefumi Orii,et al.  Bone morphogenetic protein is required for dorso‐ventral patterning in the planarian Dugesia japonica , 2007, Development, growth & differentiation.

[45]  T. H. Morgan,et al.  “Polarity” considered as a phenomenon of gradation of materials , 1905 .

[46]  J. Baguñá,et al.  Proximal and distal transformation during intercalary regeneration in the planarianDugesia(S)mediterranea , 1985, Wilhelm Roux's archives of developmental biology.

[47]  P. Reddien,et al.  Smed-βcatenin-1 Is Required for Anteroposterior Blastema Polarity in Planarian Regeneration , 2008, Science.

[48]  Flickinger Ra A gradient of protein synthesis in planaria and reversal of axial polarity of regenerates. , 1959 .

[49]  James Briscoe,et al.  The interpretation of morphogen gradients , 2006, Development.

[50]  Hans Meinhardt,et al.  Beta‐catenin and axis formation in planarians , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.