Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes

[1]  J. M. Alexander AN APPROXIMATE ANALYSIS OF THE COLLAPSE OF THIN CYLINDRICAL SHELLS UNDER AXIAL LOADING , 1960 .

[2]  T. Wierzbicki,et al.  On the Crushing Mechanics of Thin-Walled Structures , 1983 .

[3]  Tomasz Wierzbicki,et al.  Crushing analysis of metal honeycombs , 1983 .

[4]  Kevin Sear,et al.  The correlation between a level grades and degree results in England and Wales , 1983 .

[5]  S. Reid,et al.  Static and dynamic axial crushing of foam-filled sheet metal tubes , 1986 .

[6]  Norman Jones,et al.  Dynamic progressive buckling of circular and square tubes , 1986 .

[7]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[8]  T. Wierzbicki,et al.  Axial Crushing of Multicorner Sheet Metal Columns , 1989 .

[9]  O. Hopperstad,et al.  Static and dynamic axial crushing of square thin-walled aluminium extrusions , 1996 .

[10]  Enboa Wu,et al.  AXIAL CRUSH OF METALLIC HONEYCOMBS , 1997 .

[11]  Tomasz Wierzbicki,et al.  Crash behavior of box columns filled with aluminum honeycomb or foam , 1998 .

[12]  T. Wierzbicki,et al.  Experimental and numerical studies of foam-filled sections , 2000 .

[13]  F. Rammerstorfer,et al.  Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam , 2000 .

[14]  O. Hopperstad,et al.  Static and dynamic crushing of square aluminium extrusions with aluminium foam filler , 2000 .

[15]  Abdulmalik A. Alghamdi,et al.  Collapsible impact energy absorbers: an overview , 2001 .

[16]  Hasan Kurtaran,et al.  Crashworthiness design optimization using successive response surface approximations , 2002 .

[17]  Heung-Soo Kim,et al.  New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency , 2002 .

[18]  K. L. Edwards,et al.  Designing of engineering components for optimal materials and manufacturing process utilisation , 2003 .

[19]  Tongxi Yu,et al.  Energy Absorption of Structures and Materials , 2003 .

[20]  Shaker A. Meguid,et al.  On the crush behaviour of ultralight foam-filled structures , 2004 .

[21]  K. L. Edwards,et al.  Selecting materials for optimum use in engineering components , 2005 .

[22]  Jack P. C. Kleijnen,et al.  An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis , 2005, Eur. J. Oper. Res..

[23]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[24]  M. Yamashita,et al.  Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment , 2005 .

[25]  Hualing Chen,et al.  Investigation on the square cell honeycomb structures under axial loading , 2006 .

[26]  H. Kavi,et al.  Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient , 2006 .

[27]  H. Kavi,et al.  Quasi-static axial compression behavior of constraint hexagonal and square-packed empty and aluminum foam-filled aluminum multi-tubes , 2006 .

[28]  Larsgunnar Nilsson,et al.  Evaluation of response surface methodologies used in crashworthiness optimization , 2006 .

[29]  Levent Aktay,et al.  FE and coupled FE/SPH modeling of the quasi-static crushing of empty and foam-filled single, bitubular and constraint hexagonal- and square-packed aluminum tubes , 2006 .

[30]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[31]  Qing Li,et al.  Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria , 2007 .

[32]  H. Zarei,et al.  Crashworthiness optimization of empty and filled aluminum crash boxes , 2007 .

[33]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Yucheng Liu,et al.  Crashworthiness design of multi-corner thin-walled columns , 2008 .

[35]  Wei Li,et al.  Multiobjective optimization of multi-cell sections for the crashworthiness design , 2008 .

[36]  David P. Thambiratnam,et al.  Crushing response of foam-filled conical tubes under quasi-static axial loading , 2009 .

[37]  Cem Çakıroğlu Quasi-static crushing behavior of nomex honeycomb filled thin-walled aluminum tubes , 2008 .

[38]  H. Zarei,et al.  Optimum honeycomb filled crash absorber design , 2008 .

[39]  Alastair Johnson,et al.  Numerical modelling of honeycomb core crush behaviour , 2008 .

[40]  Qing Li,et al.  Multiobjective optimization for crash safety design of vehicles using stepwise regression model , 2008 .

[41]  Wei Li,et al.  Crashworthiness design for foam filled thin-wall structures , 2009 .

[42]  Guowei Ma,et al.  Modeling loading rate effect on crushing stress of metallic cellular materials , 2009 .

[43]  Sebastian Heimbs,et al.  Virtual testing of sandwich core structures using dynamic finite element simulations , 2009 .

[44]  Shiwei Zhou,et al.  Crashworthiness design for functionally graded foam-filled thin-walled structures , 2010 .

[45]  Qian Wang,et al.  Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs , 2010 .

[46]  A. Alavi Nia,et al.  The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study , 2010 .

[47]  Hoon Huh,et al.  Crushing analysis of polygonal columns and angle elements , 2010 .

[48]  Qing Li,et al.  A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials , 2010 .