Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters?

Understanding the nature and composition of larger extraterrestrial bodies that may collide with the Earth is important. One source of information lies in the record of ancient impact craters, some of which have yielded chemical information as to the impacting body. Many deeply eroded craters have no remaining melt sheet or ejecta yet may contain impactor residue within basement fractures. The emplacement mechanism for fractionated siderophile residues is likely to be gaseous, although, melt droplets and some solid materials may survive. For breccia- and melt-filled fractures to contain extraterrestrial material, they must form very early in the impact process. Most current numerical models do not dwell on the formation and location of early major fractures, although, fractures in and around small craters on brittle glass exposed to hypervelocity impact in low Earth orbit have been successfully simulated. Modelling of fracture development associated with larger craters may help locate impact residues and test the models themselves.

[1]  L. J. Spencer Meteoric Iron and Silica-Glass from the Meteorite Craters of Henbury (Central Australia) and Wabar (Arabia) , 1933 .

[2]  M. Zolensky,et al.  Why are blue zhamanshinites blue Liquid immiscibility in an impact melt , 1991 .

[3]  C. Koeberl Identification of meteoritic components in impactites , 1998, Geological Society, London, Special Publications.

[4]  B. Peucker‐Ehrenbrink,et al.  A comparison of the osmium and chromium isotopic methods for the detection of meteoritic components in impactites: Examples from the Morokweng and Vredefort Impact Structures, South Africa , 2002 .

[5]  F. Hörz,et al.  Dissemination and fractionation of projectile materials in the impact melts from Wabar Crater, Saudi Arabia , 1992 .

[6]  Gareth S. Collins,et al.  Modeling damage and deformation in impact simulations , 2004 .

[7]  A. Kearsley,et al.  Hypervelocity impact on silicon wafers with metallic and polymeric coatings , 2001 .

[8]  The terrestrial cratering rate over the last 125 million years , 2000 .

[9]  R. Clayton,et al.  Petrology, chemistry, and isotopic compositions of the lunar highland regolith breccia Dar al Gani 262 , 1998 .

[10]  V. Masaitis Impactites from Popigai crater , 1992 .

[11]  J. Spray,et al.  Pseudotachylytic rock distribution and genesis within the Sudbury impact structure , 1992 .

[12]  A. Reid,et al.  Breccia veins and dykes associated with the Roter Kamm Crater, Namibia , 1992 .

[13]  Herzog,et al.  Shock melting of the canyon diablo impactor: constraints from nickel-59 contents and numerical modeling , 1999, Science.

[14]  E. A. Taylor,et al.  Hydrocode Modelling of Space Debris Hypervelocity Impact on Soda-Lime Glass Using the Johnson-Holmquist Brittle Material Model , 1997 .

[15]  A. Gucsik,et al.  Chemical separation of Fe-Ni particles after impact , 2000 .

[16]  H. Melosh,et al.  Hydrocode simulations of Chicxulub crater collapse and peak-ring formation , 2002 .

[17]  D. J. Milton,et al.  Lonar Lake, India: An Impact Crater in Basalt , 1973, Science.

[18]  H. McSween,et al.  A petrologic and trace element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to basaltic and lherzolitic shergottites , 2001 .

[19]  C. Koeberl,et al.  Re-Os isotope and geochemical study of the Vredefort Granophyre: Clues to the origin of the Vredefort structure, South Africa , 1996 .

[20]  W. R. Kelly,et al.  The chemical composition of metallic spheroids and metallic particles within impactite from Barringer Meteorite Crater, Arizona , 1974 .

[21]  C. Pillinger,et al.  Dar Al Gani 400: Chemistry and Petrology of the Largest Lunar Meteorite , 1998 .

[22]  C. Koeberl,et al.  Evidence for a Meteoritic Component in Impact Melt Rock from the Chicxulub Structure , 1994 .

[23]  Pascal Lee,et al.  Impact‐induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis , 2001 .

[24]  H. Melosh,et al.  Hydrocode modeling of Chicxulub as an oblique impact event , 1999 .

[25]  D. Sears,et al.  The Barringer Series , 1998 .

[26]  T. Ahrens,et al.  Damage and rock-volatile mixture effects on impact crater formation , 2001 .

[27]  Colin J. Hayhurst,et al.  Numerical modeling of the compressive and tensile response of brittle materials under high pressure dynamic loading , 2001 .

[28]  D. Stöffler,et al.  Structural Deformation, Breccia Formation, and Shock Metamorphism in the Basement of Complex Terrestrial Impact Craters: Implications for the Cratering Process , 1988 .

[29]  J. Morgan,et al.  Ries impact crater, southern Germany - Search for meteoritic material , 1979 .

[30]  I. McDonald Clearwater East impact structure: A re‐interpretation of the projectile type using new platinum‐group element data from meteorites , 2002 .

[31]  J. Spray,et al.  Origin and emplacement of Offset Dykes in the Sudbury impact structure: Constraints from Hess , 1998 .

[32]  William Cassidy,et al.  A previously undescribed meteorite crater in Chile , 1966 .

[33]  P. Bland,et al.  Efficient disruption of small asteroids by Earth's atmosphere , 2003, Nature.

[34]  Bevan M. French,et al.  Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .

[35]  C. Koeberl,et al.  Morokweng, South Africa: A large impact structure of Jurassic-Cretaceous boundary age , 1997 .

[36]  A. Kearsley,et al.  The collection of micrometeoroid remnants from low earth orbit , 1999 .

[37]  H. Palme Identification of projectiles of large terrestrial impact craters and some implications for the interpretation of Ir-rich Cretaceous/Tertiary boundary layers , 1982 .

[38]  R. Brett,et al.  Metallic spherules in impactite and tektite glasses , 1966 .

[39]  R. Grieve The Terrestrial Cratering Record , 2001 .

[40]  A. Goresy,et al.  Evidence of the impacting body of the Ries crater - the discovery of Fe-Cr-Ni veinlets below the crater bottom , 1976 .

[41]  C. Koeberl,et al.  Geochemistry and petrography of impact breccias and target rocks from the 145 Ma Morokweng impact structure, South Africa , 2003 .

[42]  E. Pernicka,et al.  Chemical record of the projectile in the graded fall-back sedimentary unit from the Ries Crater, Germany , 1987 .

[43]  J. A. M. McDonnell,et al.  Quasistatic to hypervelocity impactor loading of glass: autodyn hydrocode and static testing configurations , 2001 .

[44]  R. Grieve,et al.  The terrestrial cratering record: I. Current status of observations , 1979 .

[45]  J. Rinehart Distribution of meteoritic debris about the Arizona meteorite crater , 1957 .

[46]  J. Morgan,et al.  Chicxulub: The third dimension of a multi-ring impact basin , 1999 .

[47]  T. Bunch,et al.  Petrographic and electron microprobe study of the Monturaqui impactite , 1972 .

[48]  S. Sugita,et al.  Does Laser Ablation Vapor Simulate Impact Vapor , 2003 .

[49]  F. Kyte Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4 , 2002 .

[50]  F. Kyte A meteorite from the Cretaceous/Tertiary boundary , 1998, Nature.

[51]  Simon A. Stewart,et al.  A 20-km-diameter multi-ringed impact structure in the North Sea , 2002, Nature.

[52]  B. Ivanov,et al.  Identification of ancient impact structures: Low-angle faults and related geological features of crater basements , 2000 .

[53]  N. Artemieva,et al.  Modeling the Ries‐Steinheim impact event and the formation of the moldavite strewn field , 2002 .

[54]  T. Kenkmann,et al.  Radial transpression ridges: A new structural feature of complex impact craters , 2000 .

[55]  J. Spray,et al.  The South Range Breccia Belt of the Sudbury Impact Structure: A possible terrace collapse feature , 2000 .

[56]  Boris A. Ivanov,et al.  IMPACT CRATER COLLAPSE , 1999 .

[57]  D. Brownlee,et al.  Unmelted meteoritic debris in the Late Pliocene iridium anomaly - Evidence for the ocean impact of a nonchondritic asteroid , 1985 .

[58]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[59]  R. Grieve,et al.  The terrestrial cratering record: II. The crater production rate , 1979 .

[60]  R. Hough,et al.  Woodleigh impact structure, Australia: Shock petrography and geochemical studies , 2003 .

[61]  J. Spray Localized shock- and friction-induced melting in response to hypervelocity impact , 1998, Geological Society, London, Special Publications.

[62]  C. Koeberl The Sedimentary Record of Impact Events , 2001 .

[63]  H. Melosh,et al.  Peak-ring formation in large impact craters: geophysical constraints from Chicxulub , 2000 .

[64]  F. Waanders,et al.  Vredefort: A model for the anatomy of an astrobleme , 1997 .

[65]  M. Andreoli,et al.  Platinum-group elements in the Morokweng impact structure, South Africa: Evidence for the impact of a large ordinary chondrite projectile at the Jurassic-Cretaceous boundary , 2001 .