Effect of the Spin-Orbit Interaction on Partial Entangled Quantum Network

Dzyaloshiniskii–Moriya (DM) interaction is used to generate entangled network from partially entangled states in the presence of the spin–orbit coupling. The effect of the spin coupling on the entanglement between any two nodes of the network is investigated. It is shown that the entanglement decays as the coupling increases. For larger values of the spin coupling, the entanglement oscillates between upper and lower bounds. For initially entangled channels, the upper bound does not exceed its initial value, whereas for the channels generated via indirect interaction, the entanglement reaches its maximum value.

[1]  A. Mink,et al.  Quantum key distribution with 1.25 Gbps clock synchronization , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[2]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[3]  C. Elliott Building the quantum network* , 2002 .

[4]  Z. Cao,et al.  Thermal entanglement in the anisotropic Heisenberg XYZ model with different inhomogeneous magnetic fields , 2009 .

[5]  H. A. Hessian Entropy Growth and Formation of Stationary Entanglement due to Intrinsic Noise in the Two-Mode JC Model , 2013 .

[6]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[7]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[8]  Entanglement teleportation via thermally entangled states of two-qubit Heisenberg XX chain , 2002, quant-ph/0205014.

[9]  Ahmed Younes,et al.  Database Manipulation Operations on Quantum Systems , 2013 .

[10]  Nordin Zakaria,et al.  Quantum Network via Partial Entangled State , 2014, J. Commun..

[11]  N. Metwally Entangled network and quantum communication , 2011, 1106.1261.

[12]  V. Manta,et al.  Image processing using quantum computing , 2012, 2012 16th International Conference on System Theory, Control and Computing (ICSTCC).

[13]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[14]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[15]  Yong-Sheng Zhang,et al.  Local distinguishability of orthogonal quantum states and generators of SU( N ) , 2006, quant-ph/0608040.

[16]  A. A. Ezhov,et al.  Pattern Recognition with Quantum Neural Networks , 2001, ICAPR.

[17]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[18]  A. Mohamed Quantum discord and its geometric measure with death entanglement in correlated dephasing two qubits system , 2013, 1301.7061.

[19]  X. Kong,et al.  Thermal entanglement in the Heisenberg XXZ model with Dzyaloshinskii-Moriya interaction , 2012 .

[20]  Satyabrata Adhikari,et al.  Teleportation via maximally and non-maximally entangled mixed states , 2010, Quantum Inf. Comput..

[21]  Jian-Song Zhang,et al.  Review of quantum discord in bipartite and multipartite systems , 2012 .

[22]  Zhenghong He,et al.  Influence of intrinsic decoherence on quantum teleportation via two-qubit Heisenberg XYZ chain , 2006 .