Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM

We prove inverse-type estimates for the four classical boundary integral operators associated with the Laplace operator. These estimates are used to show convergence of an h-adaptive algorithm for the coupling of a finite element method with a boundary element method which is driven by a weighted residual error estimator.

[1]  Carsten Carstensen,et al.  An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..

[2]  Tsogtgerel Gantumur,et al.  Adaptive boundary element methods with convergence rates , 2011, Numerische Mathematik.

[3]  Carsten Carstensen,et al.  Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..

[4]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[5]  Dirk Praetorius,et al.  Simple a posteriori error estimators for the h-version of the boundary element method , 2008, Computing.

[6]  Michael Karkulik,et al.  Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity , 2012, 1211.4225.

[7]  W. Hackbusch,et al.  Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .

[8]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[9]  Ricardo H. Nochetto,et al.  Quasioptimal cardinality of AFEM driven by nonresidual estimators , 2012 .

[10]  Carsten Carstensen,et al.  Adaptive coupling of boundary elements and finite elements , 1995 .

[11]  Carsten Carstensen,et al.  Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..

[12]  Michael Feischl,et al.  Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .

[13]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[14]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[15]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[16]  Carsten Carstensen,et al.  Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions , 2007, SIAM J. Sci. Comput..

[17]  Christoph Ortner,et al.  Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.

[18]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[19]  Dirk Praetorius,et al.  Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.

[20]  Carsten Carstensen,et al.  Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .

[21]  Emmanuil H. Georgoulis,et al.  Inverse-type estimates on hp-finite element spaces and applications , 2008, Math. Comput..

[22]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[23]  Carsten Carstensen,et al.  Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.

[24]  Michael Karkulik,et al.  Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh‐refinement , 2013 .

[25]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[26]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[27]  Carsten Carstensen,et al.  Convergence of adaptive boundary element methods , 2012 .

[28]  Michael Karkulik,et al.  HILBERT – A MATLAB Implementation of Adaptive BEM , 2009 .

[29]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[30]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[31]  S. Rjasanow,et al.  The Fast Solution of Boundary Integral Equations , 2007 .

[32]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[33]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[34]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .