Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM
暂无分享,去创建一个
Michael Karkulik | Jens Markus Melenk | Michael Feischl | Dirk Praetorius | Markus Aurada | Thomas Fuhrer | J. Melenk | M. Aurada | M. Karkulik | D. Praetorius | M. Feischl | Thomas Fuhrer
[1] Carsten Carstensen,et al. An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..
[2] Tsogtgerel Gantumur,et al. Adaptive boundary element methods with convergence rates , 2011, Numerische Mathematik.
[3] Carsten Carstensen,et al. Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..
[4] M. Aurada,et al. Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.
[5] Dirk Praetorius,et al. Simple a posteriori error estimators for the h-version of the boundary element method , 2008, Computing.
[6] Michael Karkulik,et al. Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity , 2012, 1211.4225.
[7] W. Hackbusch,et al. Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .
[8] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[9] Ricardo H. Nochetto,et al. Quasioptimal cardinality of AFEM driven by nonresidual estimators , 2012 .
[10] Carsten Carstensen,et al. Adaptive coupling of boundary elements and finite elements , 1995 .
[11] Carsten Carstensen,et al. Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..
[12] Michael Feischl,et al. Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .
[13] Olaf Steinbach,et al. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .
[14] Wolfgang L. Wendland,et al. Boundary integral equations , 2008 .
[15] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[16] Carsten Carstensen,et al. Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions , 2007, SIAM J. Sci. Comput..
[17] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[18] Carsten Carstensen,et al. A posteriori error estimates for boundary element methods , 1995 .
[19] Dirk Praetorius,et al. Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.
[20] Carsten Carstensen,et al. Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .
[21] Emmanuil H. Georgoulis,et al. Inverse-type estimates on hp-finite element spaces and applications , 2008, Math. Comput..
[22] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[23] Carsten Carstensen,et al. Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.
[24] Michael Karkulik,et al. Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh‐refinement , 2013 .
[25] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[26] G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .
[27] Carsten Carstensen,et al. Convergence of adaptive boundary element methods , 2012 .
[28] Michael Karkulik,et al. HILBERT – A MATLAB Implementation of Adaptive BEM , 2009 .
[29] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[30] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[31] S. Rjasanow,et al. The Fast Solution of Boundary Integral Equations , 2007 .
[32] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[33] C. Schwab,et al. Boundary Element Methods , 2010 .
[34] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .