Theoretical analysis of unconstrained nonlinear model predictive control

Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonli...

[1]  Thomas F. Edgar,et al.  On-line Parameter Estimation and Adaptation in Nonlinear Model-Based Control , 1991, 1991 American Control Conference.

[2]  J. Duane Morningred,et al.  An Adaptive Nonlinear Predictive Controller , 1990, 1990 American Control Conference.

[3]  W. Rudin Principles of mathematical analysis , 1964 .

[4]  A. Arapostathis,et al.  The effect sampling on linear equivalence and feedback linearization , 1990 .

[5]  Héctor J. Sussmann,et al.  Peaking and stabilization , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[6]  Lorenz T. Biegler,et al.  Optimization approaches to nonlinear model predictive control , 1991 .

[7]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[8]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[9]  Yaman Arkun,et al.  Nonlinear Predictive Control of a Semi Batch Polymerization Reactor by an Extended DMC , 1989 .

[10]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[11]  M. Morari,et al.  Newton control laws for nonlinear controller design , 1985, 1985 24th IEEE Conference on Decision and Control.

[12]  M. Morari,et al.  A constrained pseudo-newton control strategy for nonlinear systems , 1990 .

[13]  A. A. Patwardhan,et al.  NONLINEAR MODEL PREDICTIVE CONTROL , 1990 .

[14]  Dag Ljungquist,et al.  Predictive Control based upon State Space Models , 1988, 1988 American Control Conference.

[15]  B. Finlayson Nonlinear analysis in chemical engineering , 1980 .

[16]  M. Morari,et al.  Internal Model Control: extension to nonlinear system , 1986 .

[17]  Yaman Arkun,et al.  A Nonlinear DMC Controller: Some Modeling and Robustness Considerations , 1991, 1991 American Control Conference.

[18]  David D. Brengel,et al.  Multistep nonlinear predictive controller , 1989 .

[19]  Carlos E. García,et al.  Fundamental Process Control , 1988 .

[20]  A. Isidori,et al.  New results and examples in nonlinear feedback stabilization , 1989 .

[21]  P. Kokotovic,et al.  Feedback linearization of sampled-data systems , 1988 .

[22]  M. A. Henson,et al.  An internal model control strategy for nonlinear systems , 1991 .

[23]  D. W. Bacon,et al.  Error trajectory descriptions of nonlinear controller designs , 1990 .

[24]  Coleman B. Brosilow,et al.  Nonlinear model predictive control of styrene polymerization at unstable operating points , 1990 .

[25]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[26]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[27]  Carlos E. Garcia,et al.  QUADRATIC PROGRAMMING SOLUTION OF DYNAMIC MATRIX CONTROL (QDMC) , 1986 .

[28]  Lorenz T. Biegler,et al.  Process control strategies for constrained nonlinear systems , 1988 .

[29]  D. Normand-Cyrot,et al.  Minimum-phase nonlinear discrete-time systems and feedback stabilization , 1987, 26th IEEE Conference on Decision and Control.

[30]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[31]  P. Kokotovic,et al.  Global stabilization of partially linear composite systems , 1990 .

[32]  Rein Luus,et al.  Application of dynamic programming to final state constrained optimal control problems , 1991 .

[33]  B. Bequette Nonlinear control of chemical processes: a review , 1991 .

[34]  C. C. Chen,et al.  On receding horizon feedback control , 1981, Autom..

[35]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[36]  Y. Yeo,et al.  ADAPTIVE MODEL PREDICTIVE CONTROL FOR SINGLE INPUT-SINGLE OUTPUT BILINEAR SYSTEMS WITH STABLE INVERSES , 1988 .

[37]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[38]  Dale E. Seborg,et al.  Predictive controller design for single-input/single-output (SISO) systems , 1988 .

[39]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[40]  D. Mayne,et al.  Receding horizon control of nonlinear systems , 1990 .

[41]  Dale E. Seborg,et al.  Theoretical Analysis of Long-Range Predictive Controllers , 1989, 1989 American Control Conference.

[42]  B. Bequette NONLINEAR PREDICTIVE CONTROL USING MULTI-RATE SAMPLING , 1991 .

[43]  H. Sussmann Limitations on the stabilizability of globally-minimum-phase systems , 1990 .

[44]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .