Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators

Mg-codoped Lu3Al5O12:Ce single crystal scintillators were prepared by a micropulling down method in a wide concentration range from 0 to 3000 ppm of Mg codopant. Their structure and chemical composition were checked by X-ray diffraction and electron probe microanalysis techniques. Absorption and luminescence spectra, photoluminescence decays, and thermoluminescence glow curves were measured together with several other scintillation characteristics, namely, the scintillation decay, light yield, afterglow, and radiation damage to reveal the effect of Mg codoping. Several material characteristics manifest a beneficial effect of Mg codopant. We propose a model explaining the mechanism of material improvement which is based on the stabilization of a part of the cerium dopant in the tetravalent charge state. The stable Ce4+ center provides an additional fast radiative recombination pathway in the scintillation mechanism and efficiently competes with electron traps in garnet scintillators.

[1]  E. Auffray,et al.  LuAG:Ce fibers for high energy calorimetry , 2010 .

[2]  V. Laguta,et al.  On the origin of cerium-related centres in lead-containing single crystalline films of Y2SiO5 : Ce and Lu2SiO5 : Ce , 2014 .

[3]  Karel Nejezchleb,et al.  Thermoluminescence of Zr‐codoped Lu3Al5O12:Ce crystals , 2003 .

[4]  Thomas Jüstel,et al.  Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+. , 2013, The journal of physical chemistry. A.

[5]  Kan Yang,et al.  Effects of $\hbox {Ca}^{2+}$ Co-Doping on the Scintillation Properties of LSO:Ce , 2008, IEEE Transactions on Nuclear Science.

[6]  W. C. Walker,et al.  Exciton thermoreflectance of MgO and CaO , 1973 .

[7]  Li-Ji Lyu,et al.  Radiative and nonradiative relaxation measurements in Ce3+ doped crystals☆ , 1991 .

[8]  A. Vedda,et al.  Defect-Driven Radioluminescence Sensitization in Scintillators: The Case of Lu2Si2O7:Pr , 2013 .

[9]  J. Ueda,et al.  Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3−xGaxO12 (x = 0, 1, 2, 3) , 2013 .

[10]  P. Dorenbos Fundamental Limitations in the Performance of ${\rm Ce}^{3+}$ –, ${\rm Pr}^{3+}$ –, and ${\rm Eu}^{2+}$ –Activated Scintillators , 2010 .

[11]  K. Blažek,et al.  Luminescence of undoped LuAG and YAG crystals , 2005 .

[12]  A. Vedda,et al.  Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping , 2011 .

[13]  P. Dorenbos,et al.  Evidence and Consequences of Ce $^{4+}$ in LYSO:Ce,Ca and LYSO:Ce,Mg Single Crystals for Medical Imaging Applications , 2013, IEEE Transactions on Nuclear Science.

[14]  Martin Nikl,et al.  2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12 , 2012 .

[15]  S. Durbin,et al.  Microstructures in oxide eutectic fibers grown by a modified micro-pulling-down method , 1999 .

[16]  I. Földvári,et al.  Growth and characterization of Bi4Ge3O12 single crystals , 1982 .

[17]  A. Meijerink,et al.  Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce , 2009 .

[18]  Xi-qi Feng,et al.  Effect of Mg2+ co‐doping on the scintillation performance of LuAG:Ce ceramics , 2014 .

[19]  K. Blažek,et al.  Scintillation Properties of ${\rm Ce}^{3+}$- and ${\rm Pr}^{3+}$-Doped LuAG, YAG and Mixed ${\rm Lu}_{\rm x}{\rm Y}_{1-{\rm x}}{\rm AG}$ Garnet Crystals , 2012, IEEE Transactions on Nuclear Science.

[20]  K. Kamada,et al.  Composition Engineering in Cerium-Doped (Lu,Gd)3(Ga,Al)5O12 Single-Crystal Scintillators , 2011 .

[21]  A. Vedda,et al.  Radioluminescence Sensitization in Scintillators and Phosphors: Trap Engineering and Modeling , 2014 .

[22]  E. Auffray,et al.  Radiation hardness of LuAG:Ce and LuAG:Pr scintillator crystals , 2012 .

[23]  K. Blažek,et al.  Development of LuAG-based scintillator crystals – A review , 2013 .

[24]  M. Moszynski,et al.  Comparison of absorption, luminescence and scintillation characteristics in Lu1.95Y0.05SiO5:Ce,Ca and Y2SiO5:Ce scintillators , 2013 .

[25]  G. Ren,et al.  Composition–property relationships in (Gd3−xLux)(GayAl5−y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) multicomponent garnet scintillators , 2013 .

[26]  Fang Meng,et al.  Effect of codoping on scintillation and optical properties of a Ce-doped Gd3Ga3Al2O12 scintillator , 2013 .

[27]  A. Vedda,et al.  Shallow traps and radiative recombination processes in Lu3Al5O12:Ce single crystal scintillator , 2007 .

[28]  Xi-qi Feng,et al.  The radiation hardness of Pr:LuAG scintillating ceramics , 2014 .

[29]  M. Moszynski,et al.  Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection , 2009, IEEE Transactions on Nuclear Science.

[30]  Francesca Bonfigli,et al.  The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity , 2001 .

[31]  C. Warde,et al.  Defect‐property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium‐doped yttrium aluminum garnet , 1992 .

[32]  R Autrata,et al.  A single crystal of YAG-new fast scintillator in SEM , 1978 .