Mechanical adaptation of biological materials — The examples of bone and wood

[1]  J. Currey Mechanical properties and adaptations of some less familiar bony tissues. , 2010, Journal of the mechanical behavior of biomedical materials.

[2]  V. Tomar,et al.  Role of Molecular Level Interfacial Forces in Hard Biomaterial Mechanics: A Review , 2010, Annals of Biomedical Engineering.

[3]  Peter Fratzl,et al.  Biomimetics and Biotemplating of Natural Materials , 2010 .

[4]  C. Neinhuis,et al.  G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. , 2010, The Plant journal : for cell and molecular biology.

[5]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[6]  R. McN. Alexander,et al.  The thickness of the walls of tubular bones , 2009 .

[7]  Adam P. Summers,et al.  Biomaterials: Properties, variation and evolution. , 2009, Integrative and comparative biology.

[8]  Peter Fratzl,et al.  Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. , 2009, Integrative and comparative biology.

[9]  Paul J. Constantino,et al.  Remarkable resilience of teeth , 2009, Proceedings of the National Academy of Sciences.

[10]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  J. W. C. Dunlop,et al.  New Suggestions for the Mechanical Control of Bone Remodeling , 2009, Calcified Tissue International.

[13]  C. Ash,et al.  Happy Birthday, Mr. Darwin , 2009, Science.

[14]  Richard Weinkamer,et al.  Effect of Temporal Changes in Bone Turnover on the Bone Mineralization Density Distribution: A Computer Simulation Study , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[15]  F. Meldrum,et al.  Controlling mineral morphologies and structures in biological and synthetic systems. , 2008, Chemical reviews.

[16]  George Jeronimidis,et al.  Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. , 2008, The Plant journal : for cell and molecular biology.

[17]  S. Weiner,et al.  Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase , 2008, Proceedings of the National Academy of Sciences.

[18]  Peter Fratzl,et al.  Cellulose fibrils direct plant organ movements. , 2008, Faraday discussions.

[19]  Himadri S. Gupta,et al.  Tough Lessons From Bone: Extreme Mechanical Anisotropy at the Mesoscale , 2008 .

[20]  Ulrike G. K. Wegst,et al.  Bamboo and Wood in Musical Instruments , 2008 .

[21]  M. McKee,et al.  Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification , 2008, Journal of Molecular Medicine.

[22]  P. Fratzl,et al.  Bone mineralization density distribution in health and disease. , 2008, Bone.

[23]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[24]  Rik Huiskes,et al.  A unified theory for osteonal and hemi-osteonal remodeling. , 2008, Bone.

[25]  E. Zolotoyabko,et al.  Biomineralization of calcium carbonate: structural aspects , 2007 .

[26]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[27]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[28]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[29]  M. Grynpas,et al.  Transient precursor strategy or very small biological apatite crystals? , 2007, Bone.

[30]  S. Vogel Living in a physical world XI. To twist or bend when stressed , 2007, Journal of Biosciences.

[31]  Peter Fratzl,et al.  Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell , 2007, Planta.

[32]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[33]  P. Fratzl,et al.  The bone mineralization density distribution as a fingerprint of the mineralization process. , 2007, Bone.

[34]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[35]  John G Skedros,et al.  Mathematical analysis of trabecular 'trajectories' in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur. , 2007, Journal of Theoretical Biology.

[36]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[37]  S. Weiner Transient precursor strategy in mineral formation of bone. , 2006, Bone.

[38]  C. Mattheck,et al.  Teacher tree: The evolution of notch shape optimization from complex to simple , 2006 .

[39]  P. Fratzl,et al.  Effects of 3‐ and 5‐Year Treatment With Risedronate on Bone Mineralization Density Distribution in Triple Biopsies of the Iliac Crest in Postmenopausal Women , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[40]  M. Burghammer,et al.  Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.

[41]  P. Delmas,et al.  Drug Insight: bisphosphonates for postmenopausal osteoporosis , 2006, Nature Clinical Practice Endocrinology &Metabolism.

[42]  D. Cosgrove Growth of the plant cell wall , 2005, Nature Reviews Molecular Cell Biology.

[43]  S. Weiner,et al.  Choosing the Crystallization Path Less Traveled , 2005, Science.

[44]  R Huiskes,et al.  A theoretical framework for strain-related trabecular bone maintenance and adaptation. , 2005, Journal of biomechanics.

[45]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[46]  Richard Weinkamer,et al.  Stochastic lattice model for bone remodeling and aging. , 2004, Physical review letters.

[47]  A. Boyde,et al.  Bone mineralization density and femoral neck fragility. , 2004, Bone.

[48]  R. Recker,et al.  Bone Remodeling Increases Substantially in the Years After Menopause and Remains Increased in Older Osteoporosis Patients , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[49]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[50]  E. Seeman Invited Review: Pathogenesis of osteoporosis. , 2003, Journal of applied physiology.

[51]  J. Currey The many adaptations of bone. , 2003, Journal of biomechanics.

[52]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  P. Fratzl,et al.  Constant mineralization density distribution in cancellous human bone. , 2003, Bone.

[54]  S. Roberts,et al.  An evaluation of the uniform stress hypothesis based on stem geometry in selected North American conifers , 2002, Trees.

[55]  Matthias Epple,et al.  Biological and medical significance of calcium phosphates. , 2002, Angewandte Chemie.

[56]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[57]  Rik Huiskes,et al.  Why mechanobiology? A survey article. , 2002, Journal of biomechanics.

[58]  A. Reiterer,et al.  Cellulose microfibril angles in a spruce branch and mechanical implications , 2001 .

[59]  A. Reiterer,et al.  Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading , 2001 .

[60]  Stephen C. Cowin,et al.  The False Premise in Wolff's Law , 2001 .

[61]  K. Niklas,et al.  Response to Klaus Mattheck’s letter , 2000, Trees.

[62]  C. Mattheck Comments on “Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels” by K.J. Niklas, H.-C. Spatz, Trees (2000) 14:230–237 , 2000, Trees.

[63]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[64]  Rik Huiskes,et al.  Effects of mechanical forces on maintenance and adaptation of form in trabecular bone , 2000, Nature.

[65]  K. Niklas,et al.  Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels , 2000, Trees.

[66]  S. Stanzl-Tschegg,et al.  Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization. , 1999, Journal of structural biology.

[67]  A. Reiterer,et al.  Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls , 1999 .

[68]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[69]  Peter Zioupos,et al.  Mechanical properties of the rostrum of the whale Mesoplodon densirostris, a remarkably dense bony tissue , 1997 .

[70]  Professor Dr. Claus Mattheck,et al.  Wood - The Internal Optimization of Trees , 1995, Springer Series in Wood Science.

[71]  A. Parfitt Osteonal and hemi‐osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone , 1994, Journal of cellular biochemistry.

[72]  S C Cowin,et al.  Bone stress adaptation models. , 1993, Journal of biomechanical engineering.

[73]  Anthony Charles Neville,et al.  Biology of Fibrous Composites: Development beyond the Cell Membrane , 1993 .

[74]  D. W. Thompson On Growth and Form: The Complete Revised Edition , 1992 .

[75]  W. Hayes,et al.  Sex differences in age‐related remodeling of the femur and tibia , 1988, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[76]  M. Giraud‐Guille Twisted plywood architecture of collagen fibrils in human compact bone osteons , 1988, Calcified Tissue International.

[77]  W. Liese,et al.  Research on bamboo , 1987, Wood Science and Technology.

[78]  A. Goodship,et al.  Functional adaptation of bone to increased stress. An experimental study. , 1979, The Journal of bone and joint surgery. American volume.

[79]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[80]  Changhua Fang,et al.  GROWTH STRESSES ARE HIGHLY CONTROLLED BY THE AMOUNT OF G-LAYER IN POPLAR TENSION WOOD. , 2008 .

[81]  H. Anderson,et al.  The role of matrix vesicles in growth plate development and biomineralization. , 2005, Frontiers in bioscience : a journal and virtual library.

[82]  Bernard Thibaut,et al.  SHRINKAGE OF THE GELATINOUS LAYER OF POPLAR AND BEECH TENSION WOOD , 2001 .

[83]  A. Leclercq,et al.  ANATOMICAL CHARACTERISTICS OF TENSION WOOD AND OPPOSITE WOOD IN YOUNG INCLINED STEMS OF POPLAR (POPULUS EURAMERICANA CV 'GHOY') , 2001 .

[84]  K. Bethge,et al.  The Structural Optimization of Trees , 1998, Naturwissenschaften.

[85]  H. Lodish Molecular Cell Biology , 1986 .

[86]  J. Currey,et al.  Mechanical properties of bone tissues with greatly differing functions. , 1979, Journal of biomechanics.

[87]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.