Variance reduction via empirical variance minimization: convergence and complexity

In this paper we propose and study a generic variance reduction approach. The proposed method is based on minimization of the empirical variance over a suitable class of zero mean control functionals. We present the corresponding convergence analysis and analyze complexity. Finally some numerical results showing efficiency of the proposed approach are presented.

[1]  R. Nickl,et al.  Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type , 2007 .

[2]  G. Lugosi,et al.  Ranking and empirical minimization of U-statistics , 2006, math/0603123.

[3]  Qiang Liu,et al.  Black-box Importance Sampling , 2016, AISTATS.

[4]  N. Chopin,et al.  Control functionals for Monte Carlo integration , 2014, 1410.2392.

[5]  H. N. Mhaskar,et al.  Neural Networks for Optimal Approximation of Smooth and Analytic Functions , 1996, Neural Computation.

[6]  P. Boyle Options: A Monte Carlo approach , 1977 .

[7]  Sean McKee,et al.  Monte Carlo Methods for Applied Scientists , 2005 .

[8]  P. Glynn,et al.  Some New Perspectives on the Method of Control Variates , 2002 .

[9]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[10]  Denis Belomestny,et al.  Variance reduction for discretised diffusions via regression , 2015, 1510.03141.

[11]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[12]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[13]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[14]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[15]  S. Geer Empirical Processes in M-Estimation , 2000 .

[16]  Johan Segers,et al.  Monte Carlo integration with a growing number of control variates , 2018, Journal of Applied Probability.

[17]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[18]  Alan G. White,et al.  The Use of the Control Variate Technique in Option Pricing , 1988, Journal of Financial and Quantitative Analysis.

[19]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[20]  Nikita Zhivotovskiy,et al.  Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization , 2018, Doklady Mathematics.

[21]  Wolfgang Hörmann,et al.  Control variates and conditional Monte Carlo for basket and Asian options , 2013 .

[22]  M. Girolami,et al.  Convergence rates for a class of estimators based on Stein’s method , 2016, Bernoulli.