On the Connections of Generalized Entropies With Shannon and Kolmogorov-Sinai Entropies

We consider the concept of generalized Kolmogorov–Sinai entropy, where instead of the Shannon entropy function, we consider an arbitrary concave function defined on the unit interval, vanishing in the origin. Under mild assumptions on this function, we show that this isomorphism invariant is linearly dependent on the Kolmogorov–Sinai entropy.

[1]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[2]  A. Rényi On Measures of Entropy and Information , 1961 .

[3]  Fernando Vericat,et al.  Invariant of dynamical systems: A generalized entropy , 1996 .

[4]  Yihong Wu,et al.  Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression , 2010, IEEE Transactions on Information Theory.

[5]  Suguru Arimoto,et al.  Information-Theoretical Considerations on Estimation Problems , 1971, Inf. Control..

[6]  C. Tsallis,et al.  Power-law sensitivity to initial conditions—New entropic representation , 1997 .

[7]  C. Tsallis Entropic nonextensivity: a possible measure of complexity , 2000, cond-mat/0010150.

[8]  Fryderyk Falniowski,et al.  Possible generalized entropy convergence rates , 2013, 1309.6246.

[9]  R. A. Rosenbaum,et al.  Sub-additive functions , 1950 .

[10]  S. Furuichi Information theoretical properties of Tsallis entropies , 2004, cond-mat/0405600.

[11]  Thomas de Paly On a Class of Generalized $K$-Entropies and Bernoulli Shifts , 1982 .

[12]  Benjamin Weiss,et al.  Entropy is the Only Finitely Observable Invariant , 2006 .

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  Sébastien Ferenczi,et al.  Entropy dimensions and a class of constructive examples , 2006 .

[15]  Fernando Vericat,et al.  On the Kolmogorov-like generalization of Tsallis entropy, correlation entropies and multifractal analysis , 2002 .

[16]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[17]  B. Weiss Single Orbit Dynamics , 1999 .

[18]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[19]  L. Young Entropy in dynamical systems , 2003 .

[20]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[21]  Thomas de Paly On Entropy-Like Invariants for Dynamical Systems , 1982 .

[22]  Me Misiurewicz,et al.  A short proof of the variational principle for a ZN+ action on a compact space , 1975 .

[23]  Floris Takens,et al.  GENERALIZED ENTROPIES : RENYI AND CORRELATION INTEGRAL APPROACH , 1998 .

[24]  Evgeny Verbitskiy,et al.  Rényi entropies of aperiodic dynamical systems , 2002 .

[25]  Shou-Li Peng,et al.  A generalized Kolmogorov–Sinai-like entropy under Markov shifts in symbolic dynamics , 2009 .

[26]  S. Galatolo Global and local complexity in weakly chaotic dynamical systems , 2002, math/0210378.

[27]  Sumiyoshi Abe Tsallis entropy: how unique? , 2004 .

[28]  Frank Blume,et al.  Possible rates of entropy convergence , 1997, Ergodic Theory and Dynamical Systems.

[29]  Imre Csiszár,et al.  Axiomatic Characterizations of Information Measures , 2008, Entropy.

[30]  G. Crooks On Measures of Entropy and Information , 2015 .