Optimal control of charge transfer for slow H+ + D collisions with shaped laser pulses.

We show that optimally shaped laser pulses can beneficially influence charge transfer in slow H(+)+D collisions. Time-dependent wave packet optimal control simulations are performed based on a two-state adiabatic Hamiltonian. Optimal control is performed using either an adaptive or a fixed target to obtain the desired laser control field. In the adaptive target scheme, the target state is updated according to the renormalized fragmentary yield in the exit channel throughout the optimization process. In the fixed target scheme, the target state in the exit channel is a normalized outgoing Gaussian wave packet located at a large internuclear separation. Both approaches produced excellent optimal outcomes, far exceeding that achieved in the field-free collisional charge transfer. The adaptive target scheme proves to be more efficient, and often with complex final wave packet. In contrast, the fixed target scheme, although more slowly convergent, is found to produce high fidelity for the desired target wave packet. The control mechanism in both cases utilizes bound vibrational states of the transient HD(+) complex.

[1]  H. Rabitz,et al.  On understanding the relationship between structure in the potential surface and observables in classical dynamics: A functional sensitivity analysis approach , 1987 .

[2]  Gabriel G. Balint-Kurti,et al.  The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions , 1989 .

[3]  Ramakrishna,et al.  Optimally designed potentials for control of electron-wave scattering in semiconductor nanodevices. , 1994, Physical review. B, Condensed matter.

[4]  H. Rabitz,et al.  Effect of fluorine on the gasification rate of liquid boron oxide droplets , 1998 .

[5]  Herschel Rabitz,et al.  A general formulation of monotonically convergent algorithms in the control of quantum dynamics beyond the linear dipole interaction , 2011, Comput. Phys. Commun..

[6]  Herschel Rabitz,et al.  Managing singular behavior in the tracking control of quantum dynamical observables , 1999 .

[7]  S. Malinovskaya,et al.  Optimal control of population and coherence in three-level Λ systems , 2011, 1104.4639.

[8]  T. Kirchner,et al.  Laser-field-induced modifications of electron-transfer processes in ion-atom collisions , 2004 .

[9]  Herschel Rabitz,et al.  Unified formulation for control and inversion of molecular dynamics , 1995 .

[10]  H. Rabitz,et al.  Scaling relations for multiplicative quantum mechanical operators , 1984 .

[11]  Herschel Rabitz,et al.  Teaching the environment to control quantum systems , 2006 .

[12]  G. Gerber,et al.  Quantum control of gas-phase and liquid-phase femtochemistry. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  C. Floudas,et al.  Optimal control of a plug flow reactor with a complex reaction mechanism , 1993 .

[14]  Herschel Rabitz,et al.  The Green’s function method of sensitivity analysis in chemical kinetics , 1978 .

[15]  Xiao-Jiang Feng,et al.  Descriptor-free molecular discovery in large libraries by adaptive substituent reordering. , 2008, Bioorganic & medicinal chemistry letters.

[16]  H. Rabitz,et al.  IDENTIFIABILITY AND DISTINGUISHABILITY OF GENERAL REACTION SYSTEMS , 1994 .

[17]  H. Rabitz,et al.  The sudden approximation for scattering from noncrystalline surfaces: Applications to models of adsorbed impurities and to mixed overlayers , 1986 .

[18]  Herschel Rabitz,et al.  Control of molecular motion , 1996, Proc. IEEE.

[19]  H. Rabitz,et al.  Design of infrared laser pulses for the deexcitation of highly excited homonuclear diatomic molecules. , 2006, The Journal of chemical physics.

[20]  Herschel Rabitz,et al.  A GENERAL LUMPING ANALYSIS OF A REACTION SYSTEM COUPLED WITH DIFFUSION , 1991 .

[21]  M. Aymar,et al.  Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation versus charge exchange. , 2011, Physical review letters.

[22]  Herschel Rabitz,et al.  Conformational study of dipeptides: A sensitivity analysis approach , 1994, J. Comput. Chem..

[23]  H. Rabitz,et al.  Expected value analysis of multiparameter systems , 1987 .

[24]  Neal F. Lane,et al.  The Low-Energy, Heavy-Particle Collisions–A Close-Coupling Treatment* , 1989 .

[25]  L B Madsen,et al.  Excitation in ion-atom collisions inside subfemtosecond laser pulses. , 2002, Physical review letters.

[26]  Herschel Rabitz,et al.  Sixth International Conference on Sensitivity Analysis of Model Output Global Sensitivity Analysis for Systems with Independent and / or Correlated Inputs , 2013 .

[27]  Herschel Rabitz,et al.  Quantum control mechanism analysis through field based Hamiltonian encoding. , 2006, The Journal of chemical physics.

[28]  H. Rabitz,et al.  Kinetic model of liquid B2O3 gasification in a hydrocarbon combustion environment: I. Heterogeneous surface reactions , 1991 .

[29]  H. Rabitz,et al.  Action‐angle variables for the quantum three particle system , 1980 .

[30]  H. Rabitz,et al.  A ferroelectric model for the generation and propagation of an action potential and its magnetic field stimulation , 1999 .

[31]  H. Rabitz,et al.  State isomorphism approach to global identifiability of nonlinear systems , 1989 .

[32]  H. Rabitz Dynamics and Kinetics on Surfaces Exhibiting Defects , 1984 .

[33]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[34]  Herschel Rabitz,et al.  Noniterative algorithms for finding quantum optimal controls , 1999 .

[35]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules , 1983 .

[36]  Marcus Motzkus,et al.  Laser control strategies for energy transfer reactions in atom molecule collisions , 1999 .

[37]  D. Babikov,et al.  Phase control in the vibrational qubit. , 2006, The Journal of chemical physics.

[38]  Herschel Rabitz,et al.  Fast-kick-off monotonically convergent algorithm for searching optimal control fields , 2011 .

[39]  H. Rabitz,et al.  Exact scattering solutions in an energy sudden (ES) representation , 1983 .

[40]  Herschel Rabitz,et al.  Maximum attainable field-free molecular orientation of a thermal ensemble with near–single-cycle THz pulses , 2013 .

[41]  H. Rabitz,et al.  Multiple time scale stochastic formulation for collision problems with more than one degree of freedom , 1979 .

[42]  H. Rabitz,et al.  Sensitivity Analysis and Its Role in Quantum Scattering Theory , 2007 .

[43]  H. Rabitz,et al.  The Green’s function method of sensitivity analysis in quantum dynamics , 1979 .

[44]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[45]  K. A. Smith,et al.  Charge transfer in H + -H and H + -D collisions within the energy range 0.1-150 eV , 1982 .

[46]  Gaoren Wang,et al.  Photoassociation dynamics driven by a modulated two-color laser field , 2011 .

[47]  The structural analysis of phase space trajectories , 1986 .

[48]  K. Hoki,et al.  Quantum Control of NaI Predissociation in Subpicosecond and Several-Picosecond Time Regimes , 1999 .

[49]  H. Rabitz,et al.  Semiclassical Perturbation Theory of Molecular Collisions. I. First and Second Order , 1970 .

[50]  H. Rabitz,et al.  The connection between experimental observables and the potential energy surface in the He-HT system , 1990 .

[51]  Herschel Rabitz 2. Sensitivity Analysis of Combustion Systems , 1985, The Mathematics of Combustion.

[52]  H. Rabitz,et al.  The use of global wavefunctions in scattering theory , 1978 .

[53]  Herschel Rabitz,et al.  Condensing complex atmospheric chemistry mechanisms. 1. The direct constrained approximate lumping (DCAL) method applied to alkane photochemistry , 1998 .

[54]  H. Rabitz,et al.  Absorption intensities for the 4-0 through 7-0 overtone bands of HCl , 1981 .

[55]  Ho,et al.  Time-dependent resonance-fluorescence spectrum of two-level atoms: Sensitivity to the functional form of the strong laser pumping fields. , 1988, Physical review. A, General physics.

[56]  Herschel Rabitz,et al.  Molecular‐dynamics simulator for optimal control of molecular motion , 1991 .

[57]  H. Rabitz,et al.  Discrete-continuum hybrid model for gas-surface collisions: I. Trajectories with single, multiple collisions and capture , 1991 .

[58]  Herschel Rabitz,et al.  Extraction of parameters and their error distributions from cyclic voltammograms using bootstrap resampling enhanced by solution maps: Computational study. , 2006, Analytical chemistry.

[59]  H. Rabitz,et al.  Sensitivity analysis of rotational energy transfer processes to the intermolecular potential , 1980 .

[60]  H. Rabitz,et al.  Stochastic theory of ignition processes , 1987 .

[61]  H Rabitz,et al.  Coherent control of quantum dynamics: the dream is alive. , 2008, Science.

[62]  H. Rabitz,et al.  On the relation between electronic structure and molecular dynamics , 1990 .

[63]  An application of minimax analysis to robust optimal control of molecular dynamics , 1994 .

[64]  Z. Sheng,et al.  Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens. , 2011, Physical review letters.

[65]  L. González,et al.  A theoretical investigation of the feasibility of Tannor-Rice type control: application to selective bond breakage in gas-phase dihalomethanes. , 2012, The Journal of chemical physics.

[66]  Michael Hsieh,et al.  Quantum optimal control: Hessian analysis of the control landscape. , 2006, The Journal of chemical physics.

[67]  H. Rabitz,et al.  The classical path approximation in time‐dependent quantum collision theory , 1978 .

[68]  M. Ablowitz,et al.  A comparison between finite element methods and spectral methods as applied to bound state problems , 1980 .

[69]  H. Rabitz,et al.  Connectivity analysis of controlled quantum systems , 2004 .

[70]  Christiane P. Koch,et al.  Vibrational stabilization of ultracold KRb molecules: A comparative study , 2010, 1007.1898.

[71]  T. Kirchner Manipulating ion-atom collisions with coherent electromagnetic radiation. , 2002, Physical review letters.

[72]  Combined symbolic and numerical approach to constrained nonlinear lumping—With application to an {if{frsol|{rmH{in2}/O{in2}} oxidation model , 1996 .

[73]  A. Le,et al.  Charge transfer and excitation in slow 20 eV–2 keV H++D(1s) collisions , 2003 .

[74]  Herschel Rabitz,et al.  Assessing and managing laser system stability for quantum control experiments , 2006 .

[75]  T. Kirchner Laser-field enhanced electron transfer in p − Ne and p − Ar collisions , 2007 .

[76]  Determination of rate constants for butene isomerization by a temporal inversion method , 1997 .

[77]  Herschel Rabitz,et al.  Application of an inverse method to the determination of a two‐dimensional intermolecular potential energy surface for the Ar–OH(A 2Σ+, v=0) complex from rovibrational spectra , 1996 .

[78]  H. Rabitz,et al.  A new multiple (mass ratio) scale analysis of atom–diatom collisions , 1983 .

[79]  Action-angle variables for quantum mechanical coplanar scattering , 1984 .

[80]  H. Rabitz,et al.  Average wave function method for multiple scattering , 1986 .

[81]  Herschel Rabitz,et al.  Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules , 2004 .

[82]  Chuan-Cun Shu,et al.  Phase-only shaped laser pulses in optimal control theory: application to indirect photofragmentation dynamics in the weak-field limit. , 2012, The Journal of chemical physics.

[83]  Rabitz,et al.  Optimal control of nonlinear classical systems with application to unimolecular dissociation reactions and chaotic potentials. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[84]  H. Rabitz,et al.  The Scaling of Nonequilibrium Fluctuations in Gaseous Thermal Explosions , 1988 .

[85]  D. Neuhauser,et al.  PARADIGMS AND ALGORITHMS FOR CONTROLLING MOLECULAR MOTION , 1993 .

[86]  H. Rabitz,et al.  Generalized effective Hamiltonians: Time scale separation within a semiclassical formalism , 1978 .

[87]  H. Rabitz,et al.  The influence of laser field noise on controlled quantum dynamics. , 2004, The Journal of chemical physics.

[88]  H. Rabitz,et al.  Optimal laser control of molecular photoassociation along with vibrational stabilization , 2011 .

[89]  H. Rabitz,et al.  Inverse problems in chemical dynamics: The calculation of inverse coefficients , 1987 .

[90]  Robert L. Kosut,et al.  Topology of optimally controlled quantum mechanical transition probability landscapes , 2006 .

[91]  Xiao-Jiang Feng,et al.  Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy , 2008, Nature Biotechnology.

[92]  H. Rabitz,et al.  A new approach to molecular classical optimal control: Application to the reaction HCN→HC+N , 1995 .

[93]  C. Tang,et al.  Photon-assisted nonresonant charge exchange: A simple molecular model. [Cross sections, 10 to 1000 eV] , 1976 .

[94]  David J. Tannor,et al.  Controlled dissociation of I2 via optical transitions between the X and B electronic states , 1993 .

[95]  Average wave function method for gas–surface scattering , 1986 .

[96]  Mitchell D. Smooke,et al.  Scaling relations and self-similarity conditions in strongly coupled dynamical systems , 1988 .

[97]  H. Rabitz,et al.  Dimensionality control of coupled scattering equations using partitioning techniques , 1974 .

[98]  H. Rabitz,et al.  A scaling theoretical analysis of vibrational relaxation experiments: rotational effects and long-range collisions , 1979 .

[99]  H. Rabitz,et al.  On the use of various scaling theories in the deconvolution of rotational relaxation data: Application to pressure‐broadened linewidth measurements , 1978 .

[100]  R. Kosloff Time-dependent quantum-mechanical methods for molecular dynamics , 1988 .

[101]  H. Rabitz,et al.  The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement , 2009, 0910.1566.

[102]  Peirce,et al.  Effect of defect structures on chemically active surfaces: A continuum approach. , 1988, Physical Review B (Condensed Matter).

[103]  H. Rabitz,et al.  Modelling of relaxation measurements on highly vibrationally excited HD using direct overtone pumping and photoacoustic detection , 1980 .

[104]  Herschel Rabitz,et al.  Quantum optimal control of ozone isomerization , 2004 .

[105]  F. Anis,et al.  Laser assisted charge transfer in He$^{++}$+H collisions , 2006 .

[106]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[107]  Alex Brown,et al.  Optimal Control Theory for Manipulating Molecular Processes , 2008 .

[108]  H. Rabitz,et al.  Inversion of gas-surface scattering data for potential determination using functional sensitivity analysis. I, A case study for the He-Xe/C(0001)potential , 1991 .

[109]  Preston B. Moore,et al.  Feasibility of using photophoresis to create a concentration gradient of solvated molecules , 1996 .

[110]  A. Bandrauk,et al.  Coherence phenomena in atoms and molecules in laser fields , 1992 .

[111]  A natural potential surface dissection technique for molecular scattering , 1983 .

[112]  J. Douglas Birdwell IEEE Conference on Decision and Control , 2011 .

[113]  H. Rabitz,et al.  Effective Hamiltonian methods for the semiclassical treatment of molecular collisions , 1976 .

[114]  H. Rabitz,et al.  Why do effective quantum controls appear easy to find , 2006 .

[115]  D. Strickland,et al.  Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses. , 1994, Optics letters.

[116]  Herschel Rabitz,et al.  Cooperating or fighting with decoherence in the optimal control of quantum dynamics. , 2006, The Journal of chemical physics.

[117]  Robert L. Kosut,et al.  Optimal experiment design for quantum state tomography of a molecular vibrational mode , 2008 .

[118]  H. Rabitz,et al.  Semi-analytic evaluation of morse oscillator energies and wavefunctions in excited rotational states , 1978 .

[119]  Herschel Rabitz,et al.  Identifiability and distinguishability of first-order reaction systems , 1988 .

[120]  Herschel Rabitz,et al.  A general analysis of approximate lumping in chemical kinetics , 1990 .

[121]  H. Rabitz,et al.  Inversion of gas–surface scattering data for potential determination using functional sensitivity analysis. II. Extraction of the full interaction potential from low energy diffraction data , 1992 .

[122]  H. Rabitz,et al.  Optimal control landscapes for quantum observables. , 2006, The Journal of chemical physics.

[123]  Herschel Rabitz,et al.  An inverse method for obtaining smooth multidimensional potential energy surfaces: application to Ar+OH A 2∑+(v=0) , 1995 .

[124]  H. Rabitz,et al.  Inverse control of quantum-mechanical systems: some application studies , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[125]  M. Dahleh,et al.  Design challenges for control of molecular dynamics , 1992, IEEE Control Systems.

[126]  H. Rabitz,et al.  On the validity of the energy sudden approximation , 1983 .

[127]  A. Dalgarno Charge transfer processes in astrophysical plasmas , 1985 .

[128]  H. Rabitz,et al.  Selective excitation in harmonic molecular systems by optimally designed fields , 1989 .

[129]  R. Vivie-Riedle,et al.  Optimal conversion of an atomic to a molecular Bose-Einstein condensate , 2002 .

[130]  Christiane P. Koch,et al.  Stabilization of ultracold molecules using optimal control theory (14 pages) , 2004 .

[131]  H. Rabitz,et al.  Regularized inversion of diatomic vibration-rotation spectral data: A functional sensitivity analysis approach , 1992 .

[132]  Herschel Rabitz,et al.  Accelerated monotonic convergence of optimal control over quantum dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  Xiao-Jiang Feng,et al.  Closed-Loop Learning Control of Bio-Networks , 2004, J. Comput. Biol..

[135]  H. Rabitz,et al.  T‐matrix scaling relations: Necessary and sufficient conditions for the existence of dynamically invariant scaling coefficients , 1984 .

[136]  H. Rabitz,et al.  A discrete‐continuum hybrid model for vibrational energy transfer at the gas–solid interface. II. The quantal evolution of coupled localized‐collective motions , 1994 .

[137]  H. Rabitz,et al.  On the inversion of atomic scattering data: A new algorithm based on functional sensitivity analysis , 1989 .

[138]  H. Rabitz,et al.  Stochastic theory for molecular collisions in the perturbation limit , 1977 .

[139]  H. Rabitz,et al.  Stochastic theory for molecular collisions: Application to the CO–He system , 1979 .

[140]  Herschel Rabitz,et al.  Parametric sensitivity of system stability in chemical dynamics , 1985 .

[141]  H. Rabitz,et al.  A Comparison of Quantum, Classical, and Semiclassical Descriptions of a Model, Collinear, Inelastic Collision of Two Diatomic Molecules. , 1985 .

[142]  Herschel Rabitz,et al.  Competitive tracking of molecular objectives described by quantum mechanics , 1995 .

[143]  Herschel Rabitz,et al.  Optimal molecular control in the harmonic regime : the methylene halide chemical series and fluorobenzene , 1993 .

[144]  Herschel Rabitz,et al.  Chemical sensitivity analysis theory with applications to molecular dynamics and kinetics , 1981, Comput. Chem..

[145]  H. Rabitz,et al.  Global sensitivity analysis of nonlinear chemical kinetic equations using lie groups: I. Determination of one-parameter groups , 1989 .

[146]  Herschel Rabitz,et al.  Exploring the capabilities of quantum optimal dynamic discrimination. , 2009, The Journal of chemical physics.

[147]  H. Rabitz,et al.  Role of controllability in optimizing quantum dynamics , 2009, 0910.4702.

[148]  H. Sadeghpour,et al.  ADIABATIC FORMULATION OF HETERONUCLEAR HYDROGEN MOLECULAR ION , 1999 .

[149]  Eugene P. Dougherty,et al.  A computational algorithm for the Green's function method of sensitivity analysis in chemical kinetics , 1979 .

[150]  Volume fractions of the kinematic 'near-critical' sets of the quantum ensemble control landscape , 2011, 1102.5269.

[151]  Rabitz,et al.  Optimally controlled quantum molecular dynamics: The effect of nonlinearities on the magnitude and multiplicity of control-field solutions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[152]  Kevin K. Lehmann,et al.  Optimal design of external fields for controlling molecular motion: application to rotation , 1990 .

[153]  H. Rabitz,et al.  Scaling theoretic deconvolution of bulk relaxation data: State‐to‐state rates from pressure‐broadened linewidths , 1978 .

[154]  H. Rabitz,et al.  Optimal control of population transfer in an optically dense medium , 1996 .

[155]  Herschel Rabitz,et al.  Optimal control landscape for the generation of unitary transformations , 2008 .

[156]  Herschel Rabitz,et al.  Display of the flow of energy in molecules , 1994, J. Comput. Chem..

[157]  H. Rabitz,et al.  Quantum mechanical optimal control of physical observables in microsystems , 1990 .

[158]  Xiao-Jiang Feng,et al.  Why is chemical synthesis and property optimization easier than expected? , 2011, Physical chemistry chemical physics : PCCP.

[159]  H. Rabitz,et al.  A localized integral equation formulation of molecular scattering , 1982 .

[160]  Herschel Rabitz,et al.  Gradient algorithm applied to laboratory quantum control , 2009 .

[161]  Minh Q. Phan,et al.  A self-guided algorithm for learning control of quantum-mechanical systems , 1999 .

[162]  David Robert Schultz,et al.  Laser-modified charge-transfer processes in proton collisions with lithium atoms , 2003 .

[163]  Richard A. Yetter,et al.  Some interpretive aspects of elementary sensitivity gradients in combustion kinetics modeling , 1985 .

[164]  M. F. Ciappina,et al.  Laser-assisted ion-atom collisions : Plateau, cutoff, and multiphoton peaks , 2008 .

[165]  H. Rabitz,et al.  The direct lumping approach: an application to a catalytic reforming model , 1993 .

[166]  Chu,et al.  Laser-assisted charge-transfer reactions (Li3++H): Coupled dressed-quasimolecular-state approach. , 1985, Physical review. A, General physics.

[167]  Ofer M. Shir,et al.  Control of quantum dynamics by optimized measurements , 2008, 0902.2596.

[168]  H. Rabitz,et al.  Probing the He–H2 potential surface with dynamical and kinetic observables , 1989 .

[169]  P. A. Brühwiler,et al.  Charge-transfer dynamics studied using resonant core spectroscopies , 2002 .

[170]  Arnold T. Hagler,et al.  Application of sensitivity analysis to the establishment of intermolecular potential functions , 1991 .

[171]  Eugene P. Dougherty,et al.  COMPUTATIONAL KINETICS AND SENSITIVITY ANALYSIS OF HYDROGEN-OXYGEN COMBUSTION , 1980 .

[172]  Eric T. Shea-Brown,et al.  Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model , 2007, Journal of neural engineering.

[173]  Manolis A. Christodoulou,et al.  Convergence Properties of a Class of , 1996 .

[174]  H. Rabitz,et al.  Sensitivity analysis in molecular dynamics and inverse scattering , 1989 .

[175]  H. Rabitz,et al.  Optimal control of bond selectivity in unimolecular reactions , 1991 .

[176]  F A Rabitz,et al.  Local and global parametric analysis of reacting flows , 1986 .

[177]  Herschel Rabitz,et al.  Multicut‐HDMR with an application to an ionospheric model , 2004, J. Comput. Chem..

[178]  H. Rabitz,et al.  Finite element methods for reactive scattering , 1978 .

[179]  I Ben-Itzhak,et al.  Charge exchange in slow H+ + D(1s) collisions , 2000 .

[180]  C. Lin,et al.  Full Ambiguity-Free Quantum Treatment of D + +H\(1s\) Charge Transfer Reactions at Low Energies , 1999 .

[181]  H. Rabitz,et al.  A special singular perturbation method for kinetic model reduction: With application to an H2/O2 oxidation model , 1996 .

[182]  H. Rabitz,et al.  Determination of multiple diabatic potentials by the inversion of atom–atom scattering data , 1995 .

[183]  H. Rabitz,et al.  Selective excitation of molecular eigenstates using state-dependent optical field design , 1996 .

[184]  H. Rabitz,et al.  HAMILTONIAN IDENTIFICATION FOR QUANTUM SYSTEMS: WELL-POSEDNESS AND NUMERICAL APPROACHES ¤ , 2007 .

[185]  H. Rabitz,et al.  Quantum number and energy scaling of rotationally inelastic scattering cross sections , 1977 .

[186]  Huang,et al.  Inverse quantum-mechanical control: A means for design and a test of intuition. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[187]  Gaoren Wang,et al.  Stabilizing photoassociated Cs 2 molecules by optimal control , 2013 .

[188]  Herschel Rabitz,et al.  New approaches to determination of constrained lumping schemes for a reaction system in the whole composition space , 1991 .

[189]  Herschel Rabitz,et al.  Optimal dynamic detection of explosives , 2011, Defense + Commercial Sensing.

[190]  Herschel Rabitz,et al.  Concatenated toolkit for quantum optimal control wave-function propagation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[191]  Steady state reactive kinetics on surfaces exhibiting defect structures , 1985 .

[192]  Ole Steuernagel,et al.  Spontaneous parametric down-conversion for an arbitrary monochromatic pump beam , 1998 .

[193]  Young Sik Kim,et al.  Focused bulk ultrasonic waves generated by ring‐shaped laser illumination and application to flaw detection , 1996 .

[194]  Rabitz,et al.  Robust optimal control of quantum molecular systems in the presence of disturbances and uncertainties. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[195]  Richard A. Yetter,et al.  A Comprehensive Reaction Mechanism For Carbon Monoxide/Hydrogen/Oxygen Kinetics , 1991 .

[196]  H. Rabitz,et al.  Global sensitivity analysis of nonlinear chemical kinetic equations using lie groups: II. Some chemical and mathematical properties of the transformation groups , 1989 .

[197]  T. Niederhausen,et al.  Capture and ionization in laser-assisted proton-hydrogen collisions , 2006 .

[198]  H. Rabitz,et al.  Physical analysis of atom-symmetric top collisions , 1978 .

[199]  Herschel Rabitz,et al.  SENSITIVITY ANALYSIS OF A TWO-DIMENSIONAL SQUARE LATTICE MODEL OF PROTEIN FOLDING , 1995 .

[200]  H. Rabitz,et al.  Stochastic theory of molecular collisions. II. Application to atom--vibrotor collisions. [Energy-conserving classical path model, Fokker-Planck equation coefficients] , 1977 .

[201]  H. Rabitz,et al.  Optimal control of classical molecular dynamics: A perturbation formulation and the existence of multiple solutions , 1994 .

[202]  H. Rabitz,et al.  Sensitivity of elastic gas–surface scattering to the potential: A functional sensitivity approach based on wave packet dynamics , 1990 .

[203]  Shenghua Shi,et al.  Optimal control of selective vibrational excitation of harmonic molecules: Analytic solution and restricted forms for the optimal fields , 1990 .

[204]  H. Rabitz,et al.  Optimal control of vibronic population inversion with inclusion of molecular rotation , 1994 .

[205]  H. Rabitz,et al.  Discrete-continuum hybrid model for gas-surface collisions: II. Closed form perturbation solutions for single collisions , 1991 .

[206]  H. Rabitz,et al.  Forward and inverse functional variations in elastic scattering , 1987 .

[207]  Herschel Rabitz,et al.  General Sensitivity Analysis of Differential Equation Systems , 1984 .

[208]  H. Rabitz,et al.  Multi-phase model for ignition and combustion of boron particles , 1999 .

[209]  Herschel Rabitz,et al.  Efficient algorithms for the laboratory discovery of optimal quantum controls. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[210]  Efficient extraction of quantum Hamiltonians from optimal laboratory data , 2003, quant-ph/0312212.

[211]  Richard A. Yetter,et al.  A combined stability‐sensitivity analysis of weak and strong reactions of hydrogen/oxygen mixtures , 1991 .

[212]  Michael D. Feit,et al.  Wave packet dynamics and chaos in the Hénon–Heiles system , 1984 .