Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar

Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output–input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed‐based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass‐scale deployment of PBCs.

[1]  Biotechnology and Biological Sciences Research Council (BBSRC) , 2018, The Grants Register 2022.

[2]  I. Donnison,et al.  Genomic index selection provides a pragmatic framework for setting and refining multi-objective breeding targets in Miscanthus , 2018, Annals of botany.

[3]  A. Bentley,et al.  Investigating the potential of novel non-woven fabrics for efficient pollination control in plant breeding , 2018, PloS one.

[4]  S. Long,et al.  Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea. , 2018, Annals of botany.

[5]  M. Fikere Genomic selection and genome-wide association studies in diverse canola (Brassica napus L.) populations , 2018 .

[6]  Fred E. Gouker,et al.  Characterization of a large sex determination region in Salix purpurea L. (Salicaceae) , 2018, Molecular Genetics and Genomics.

[7]  C. Buell,et al.  Quantitative Trait Locus Mapping for Flowering Time in a Lowland × Upland Switchgrass Pseudo‐F2 Population , 2018, The plant genome.

[8]  K. Moore,et al.  30 Years of Progress toward Increased Biomass Yield of Switchgrass and Big Bluestem , 2018 .

[9]  S. Sharma,et al.  Genetic mapping of biomass yield in three interconnected Miscanthus populations , 2018 .

[10]  Megan Kennedy,et al.  Extensive Genetic Diversity is Present within North American Switchgrass Germplasm , 2018, The plant genome.

[11]  Ajaya K. Biswal,et al.  Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis , 2018, Nature Biotechnology.

[12]  Caixia Gao The future of CRISPR technologies in agriculture , 2018, Nature Reviews Molecular Cell Biology.

[13]  Bing Yang,et al.  Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9 , 2017, Plant biotechnology journal.

[14]  Biyue Tan Genomic selection and genome-wide association studies to dissect quantitative traits in forest trees , 2018 .

[15]  M. Casler,et al.  Breeding for Biomass Yield in Switchgrass Using Surrogate Measures of Yield , 2018, BioEnergy Research.

[16]  B. McMahon,et al.  Additive and Non-Additive Genetic Variances for Tree Growth in Several Hybrid Poplar Populations and Implications Regarding Breeding Strategy , 2017 .

[17]  T. Pniewski,et al.  Effective and simple in vitro regeneration system of Miscanthus sinensis, M. × giganteus and M. sacchariflorus for planting and biotechnology purposes , 2017 .

[18]  Gerald A. Tuskan,et al.  Quantitative trait locus mapping of Populus bark features and stem diameter , 2017, BMC Plant Biology.

[19]  I. Donnison,et al.  Genetic relationships between spring emergence, canopy phenology, and biomass yield increase the accuracy of genomic prediction in Miscanthus , 2017, Journal of experimental botany.

[20]  Antoine Harfouche,et al.  UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought , 2017, Front. Plant Sci..

[21]  Andreas Kiesel,et al.  Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil , 2017 .

[22]  R. Bhalerao,et al.  Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective , 2017, Annals of botany.

[23]  T. Mockler,et al.  High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. , 2017, Current opinion in plant biology.

[24]  J. Qiu,et al.  Progress and prospects in plant genome editing , 2017, Nature Plants.

[25]  Yuefeng Guan,et al.  Gametophytic Self‐Incompatibility Is Operative in Miscanthus sinensis (Poaceae) and Is Affected by Pistil Age , 2017 .

[26]  Syed Shan-e-Ali Zaidi,et al.  CRISPR-Cpf1: A New Tool for Plant Genome Editing. , 2017, Trends in plant science.

[27]  A. Hastings,et al.  Economic and Environmental Assessment of Seed and Rhizome Propagated Miscanthus in the UK , 2017, Front. Plant Sci..

[28]  Antonio J Giraldez,et al.  CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing , 2017, bioRxiv.

[29]  L. Trindade,et al.  Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries , 2017, Front. Plant Sci..

[30]  L. Trindade,et al.  Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels , 2017, BMC Genomics.

[31]  Mihály Héder From NASA to EU: the evolution of the TRL scale in Public Sector Innovation , 2017 .

[32]  L. Trindade,et al.  Extending Miscanthus Cultivation with Novel Germplasm at Six Contrasting Sites , 2017, Front. Plant Sci..

[33]  L. Trindade,et al.  Impact of drought stress on growth and quality of miscanthus for biofuel production , 2017 .

[34]  Ivan Tarakanov,et al.  Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields , 2017, Front. Plant Sci..

[35]  P. Adler,et al.  Biomass Yield of Switchgrass Cultivars under High- versus Low-Input Conditions , 2017 .

[36]  M. Mahfouz,et al.  Genome editing: The efficient tool CRISPR–Cpf1 , 2017, Nature Plants.

[37]  Beum-Chang Kang,et al.  CRISPR/Cpf1-mediated DNA-free plant genome editing , 2017, Nature Communications.

[38]  Alexander G. Fletcher,et al.  Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences , 2017, bioRxiv.

[39]  G. Johnson,et al.  Genotype × environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids , 2017 .

[40]  I. Donnison,et al.  Phenomics analysis of drought responses in Miscanthus collected from different geographical locations , 2017 .

[41]  L. Trindade,et al.  Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products , 2017 .

[42]  A. Hastings,et al.  Progress in upscaling Miscanthus biomass production for the European bio‐economy with seed‐based hybrids , 2017 .

[43]  Iain S. Donnison,et al.  Environmental costs and benefits of growing Miscanthus for bioenergy in the UK , 2015, Global change biology. Bioenergy.

[44]  K. Barry,et al.  Genome-wide associations with flowering time in switchgrass using exome-capture sequencing data. , 2017, The New phytologist.

[45]  Mark F. Davis,et al.  Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides. , 2017, The New phytologist.

[46]  R. Varshney,et al.  Genomic Selection for Crop Improvement , 2017, Springer International Publishing.

[47]  L. Trindade,et al.  Stability of Cell Wall Composition and Saccharification Efficiency in Miscanthus across Diverse Environments , 2017, Frontiers in plant science.

[48]  Junhua Peng,et al.  Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia. , 2016, Annals of botany.

[49]  M. Morgante,et al.  Characterization of the Poplar Pan-Genome by Genome-Wide Identification of Structural Variation , 2016, Molecular biology and evolution.

[50]  J. Crawford,et al.  Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment , 2016, Biotechnology for Biofuels.

[51]  Rick Gustafson,et al.  Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment , 2016, Biotechnology for Biofuels.

[52]  John A. Stanturf,et al.  Ecosystem Services of Woody Crop Production Systems , 2016, BioEnergy Research.

[53]  John H. Doonan,et al.  Challenges of Crop Phenomics in the Post-genomic Era , 2016 .

[54]  I. Shield,et al.  Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat , 2016, BioEnergy Research.

[55]  J. Casacuberta,et al.  New Transformation Technologies for Trees , 2016 .

[56]  G. Tóth,et al.  Heavy metals in agricultural soils of the European Union with implications for food safety. , 2016, Environment international.

[57]  C. Robin Buell,et al.  Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium , 2016, G3: Genes, Genomes, Genetics.

[58]  I. Hara-Nishimura,et al.  An efficient Agrobacterium-mediated transformation method for switchgrass genotypes using Type I callus , 2016 .

[59]  Mark F. Davis,et al.  Analysis of the genetic variation in growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa provenances , 2016, Tree Genetics & Genomes.

[60]  J. Leplé,et al.  Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding , 2016, bioRxiv.

[61]  S. Berlin,et al.  Association mapping in Salix viminalis L. (Salicaceae) – identification of candidate genes associated with growth and phenology , 2015, Global change biology. Bioenergy.

[62]  W. Boerjan,et al.  Lessons from 25 years of GM tree field trials in Europe and prospects for the future , 2016 .

[63]  I. Lewandowski The Role of Perennial Biomass Crops in a Growing Bioeconomy , 2016 .

[64]  S. Strauss,et al.  Lessons from Two Decades of Field Trials with Genetically Modified Trees in the USA: Biology and Regulatory Compliance , 2016 .

[65]  C. N. Stewart,et al.  Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.) , 2015, Plant Cell Reports.

[66]  K. Vogel,et al.  Switchgrass Germplasm Resources , 2015 .

[67]  I. Lewandowski Securing a sustainable biomass supply in a growing bioeconomy , 2015 .

[68]  Chung-Jui Tsai,et al.  Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. , 2015, The New phytologist.

[69]  A. Karp,et al.  Efficient method for rapid multiplication of clean and healthy willow clones via in vitro propagation with broad genotype applicability , 2015 .

[70]  Shuai Xue,et al.  Present and future options for Miscanthus propagation and establishment , 2015 .

[71]  David B. Neale,et al.  The Evolution of Forest Genetics and Tree Improvement Research in the United States , 2015 .

[72]  P. Lærke,et al.  Comparing annual and perennial crops for bioenergy production – influence on nitrate leaching and energy balance , 2015 .

[73]  Yong-Bi Fu Understanding crop genetic diversity under modern plant breeding , 2015, Theoretical and Applied Genetics.

[74]  Chaofeng Li,et al.  Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation , 2015, Scientific Reports.

[75]  N. Scarlat,et al.  The role of biomass and bioenergy in a future bioeconomy: Policies and facts , 2015 .

[76]  J. Juvik,et al.  Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity , 2015 .

[77]  Christopher N. Topp,et al.  Applying high-throughput phenotyping to plant-insect interactions: picturing more resistant crops. , 2015, Current opinion in insect science.

[78]  A. Hastings,et al.  History of the development of Miscanthus as a bioenergy crop: from small beginnings to potential realisation , 2015, Biology and Environment: Proceedings of the Royal Irish Academy.

[79]  G. Taylor,et al.  Genetic and morphological differentiation in Populus nigra L.: isolation by colonization or isolation by adaptation? , 2015, Molecular ecology.

[80]  S. Fei,et al.  Plant regeneration and genetic transformation in switchgrass — A review , 2015 .

[81]  Junhua Peng,et al.  Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression , 2015, Journal of experimental botany.

[82]  Robert W. Sykes,et al.  High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus , 2015, BMC Genomics.

[83]  Huw D Jones,et al.  Regulatory uncertainty over genome editing , 2015, Nature Plants.

[84]  H. Jones Future of breeding by genome editing is in the hands of regulators. , 2015, GM crops & food.

[85]  A. Karp,et al.  Breeding willow for short rotation coppice energy cropping , 2015 .

[86]  M. Jones,et al.  Miscanthus: a case study for the utilization of natural genetic variation , 2014, Plant Genetic Resources.

[87]  Angela Karp,et al.  Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). , 2014, Tree physiology.

[88]  A. Harfouche,et al.  Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. , 2014, Tree physiology.

[89]  Robert B. Mitchell,et al.  Registration of ‘Liberty’ Switchgrass , 2014 .

[90]  S. Berlin,et al.  Genetic diversity, population structure and phenotypic variation in European Salix viminalis L. (Salicaceae) , 2014, Tree Genetics & Genomes.

[91]  Wendy Schackwitz,et al.  Nature Genetics Advance Online Publication Population Genomics of Populus Trichocarpa Identifies Signatures of Selection and Adaptive Trait Associations , 2022 .

[92]  W. Lazarus,et al.  Impacts of Supplyshed-Level Differences in Productivity and Land Costs on the Economics of Hybrid Poplar Production in Minnesota, USA , 2014, BioEnergy Research.

[93]  D. Jiang,et al.  The Discovery of Natural Miscanthus Accessions Related to Miscanthus × giganteus Using Chloroplast DNA , 2014 .

[94]  G. Tuskan,et al.  Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. , 2014, The New phytologist.

[95]  S. Long,et al.  A footprint of past climate change on the diversity and population structure of Miscanthus sinensis. , 2014, Annals of botany.

[96]  Jeong-Il Kim,et al.  Phenotypic Characterization of Transgenic Miscanthus sinensis Plants Overexpressing Arabidopsis Phytochrome B , 2014 .

[97]  S. Cutler,et al.  Plant genome engineering in full bloom. , 2014, Trends in plant science.

[98]  I. Hara-Nishimura,et al.  A simple and reliable multi-gene transformation method for switchgrass , 2014, Plant Cell Reports.

[99]  Fred E. Gouker,et al.  Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids , 2014, BMC Plant Biology.

[100]  Michael D. Casler,et al.  Selection for Biomass Yield in Upland, Lowland, and Hybrid Switchgrass , 2014 .

[101]  A. Lovett,et al.  The availability of land for perennial energy crops in Great Britain , 2014 .

[102]  Jean-Karim Hériché,et al.  Systematic Cell Phenotyping , 2014 .

[103]  Kerrie Farrar,et al.  Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis , 2013, The New phytologist.

[104]  Michelle J. Serapiglia,et al.  The domestication and conservation of Populus and Salix genetic resources. , 2014 .

[105]  J. Isebrands,et al.  Ecology and physiology of poplars and willows. , 2014 .

[106]  P. LaFayette,et al.  Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.) , 2014, Plant Cell Reports.

[107]  J. Isebrands,et al.  Poplars and willows: trees for society and the environment. , 2014 .

[108]  Jeong-Il Kim,et al.  Agrobacterium-mediated genetic transformation of Miscanthus sinensis , 2013, Plant Cell, Tissue and Organ Culture (PCTOC).

[109]  J. Ehlting,et al.  Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions. , 2013, The New phytologist.

[110]  Dongfa Sun,et al.  Genetic Diversity and Population Structure of Miscanthus sinensis Germplasm in China , 2013, PloS one.

[111]  John Clifton-Brown,et al.  Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus , 2013, Journal of experimental botany.

[112]  Gordon G. Allison,et al.  Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass Miscanthus sinensis , 2013 .

[113]  Chung-Jui Tsai Next-generation sequencing for next-generation breeding, and more. , 2013, The New phytologist.

[114]  M. Morgante,et al.  Breeding with rare defective alleles (BRDA): a natural Populus nigra HCT mutant with modified lignin as a case study. , 2013, The New phytologist.

[115]  S. Dalton Biotechnology of Miscanthus , 2013 .

[116]  I. Donnison,et al.  Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield , 2013, Journal of experimental botany.

[117]  A. Kilian,et al.  Linkage Maps of Lowland and Upland Tetraploid Switchgrass Ecotypes , 2013, BioEnergy Research.

[118]  Wendy S. Schackwitz,et al.  A 34K SNP genotyping array for Populus trichocarpa: Design, application to the study of natural populations and transferability to other Populus species , 2013, Molecular ecology resources.

[119]  Robert J. Elshire,et al.  Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol , 2013, PLoS genetics.

[120]  M. Brancourt-Hulmel,et al.  Shoot organogenesis in three Miscanthus species and evaluation for genetic uniformity using AFLP analysis , 2013, Plant Cell, Tissue and Organ Culture (PCTOC).

[121]  Hai Peng Guo,et al.  Rapid In Vitro Propagation of Bioenergy Crop Miscanthus Sacchariflorus , 2012 .

[122]  Wendy S. Schackwitz,et al.  Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. , 2012, The New phytologist.

[123]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[124]  Linglong Liu,et al.  A High-Density Simple Sequence Repeat-Based Genetic Linkage Map of Switchgrass , 2012, G3: Genes | Genomes | Genetics.

[125]  Antoine Harfouche,et al.  Accelerating the domestication of forest trees in a changing world. , 2012, Trends in plant science.

[126]  Michael D. Casler,et al.  Switchgrass Breeding, Genetics, and Genomics , 2012 .

[127]  Qi Xiang Zhang,et al.  Micropropagation and plant regeneration from embryogenic callus of Miscanthus sinensis , 2011, In Vitro Cellular & Developmental Biology - Plant.

[128]  Tetsuya Yamada,et al.  Establishment of an efficient in vitro culture and particle bombardment‐mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop , 2011 .

[129]  D. L. Price,et al.  Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences , 2011, Genetica.

[130]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[131]  Ruyu Li,et al.  High throughput Agrobacterium-mediated switchgrass transformation , 2011 .

[132]  R. Dixon,et al.  Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass , 2011, Proceedings of the National Academy of Sciences.

[133]  Ian Shield,et al.  Genetic improvement of willow for bioenergy and biofuels. , 2011, Journal of integrative plant biology.

[134]  D. Neale,et al.  Forest tree genomics: growing resources and applications , 2011, Nature Reviews Genetics.

[135]  A. Karp,et al.  Seed to near market variety: the BEGIN willow breeding pipeline 2003-2010 and beyond , 2011 .

[136]  Antoine Harfouche,et al.  Tree genetic engineering and applications to sustainable forestry and biomass production. , 2011, Trends in biotechnology.

[137]  Lauren D. Quinn,et al.  Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States , 2010 .

[138]  S. Omholt,et al.  Phenomics: the next challenge , 2010, Nature Reviews Genetics.

[139]  Qifa Zhang,et al.  Genome-wide association studies of 14 agronomic traits in rice landraces , 2010, Nature Genetics.

[140]  R. Wu,et al.  Complete Switchgrass Genetic Maps Reveal Subgenome Collinearity, Preferential Pairing and Multilocus Interactions , 2010, Genetics.

[141]  Jean-Luc Jannink,et al.  Genomic selection in plant breeding: from theory to practice. , 2010, Briefings in functional genomics.

[142]  D. Neale,et al.  Populus Breeding: From the Classical to the Genomic Approach , 2010 .

[143]  Stefan Jansson,et al.  The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. , 2009, The New phytologist.

[144]  A. Hastings,et al.  Future energy potential of Miscanthus in Europe , 2009 .

[145]  G. Bollero,et al.  The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review , 2009 .

[146]  J. Juvik,et al.  Genome Size of Three Miscanthus Species , 2009, Plant Molecular Biology Reporter.

[147]  A. Karp,et al.  A Genetic Study of a Salix Germplasm Resource Reveals New Insights into Relationships Among Subgenera, Sections and Species , 2008, BioEnergy Research.

[148]  S. Strauss,et al.  Stability of Herbicide Resistance over 8 Years of Coppice in Field-Grown, Genetically Engineered Poplars , 2008 .

[149]  P. Ingvarsson,et al.  Nucleotide Polymorphism and Phenotypic Associations Within and Around the phytochrome B2 Locus in European Aspen (Populus tremula, Salicaceae) , 2008, Genetics.

[150]  G. Argus,et al.  Chromosome numbers of some North American Salix , 1968, Brittonia.

[151]  A. Karp,et al.  Overcoming barriers to crossing in willow (Salix spp.) breeding , 2008 .

[152]  G. Argus Salix (Salicaceae) Distribution Maps and a Synopsis of Their Classification in North America, North of Mexico , 2007 .

[153]  George S. Ford,et al.  A Valley of Death in the Innovation Sequence: An Economic Investigation , 2007 .

[154]  R. Bernardo,et al.  Prospects for genomewide selection for quantitative traits in maize , 2007 .

[155]  M. Goddard,et al.  Genomic selection. , 2007, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[156]  Akwasi A. Boateng,et al.  Switchgrass as a biofuels feedstock in the USA , 2006 .

[157]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[158]  R. Rousseau,et al.  Biomass productivity improvement for eastern cottonwood , 2006 .

[159]  P. Ingvarsson,et al.  Clinal Variation in phyB2, a Candidate Gene for Day-Length-Induced Growth Cessation and Bud Set, Across a Latitudinal Gradient in European Aspen (Populus tremula) , 2006, Genetics.

[160]  M. Quigley,et al.  Willows Beyond Wetlands: Uses of Salix L. Species for Environmental Projects , 2005 .

[161]  Jay R Reichman,et al.  Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[162]  G. Taylor,et al.  Morphological and physiological traits influencing biomass productivity in short-rotation coppice poplar , 2004 .

[163]  I. Linde-Laursen,et al.  Cytogenetic Analysis of Miscanthus‘Giganteus’, an Interspecific Hybrid , 2004 .

[164]  L. Comai,et al.  Agrobacterium mediated transformation and regeneration of Populus , 1987, Molecular and General Genetics MGG.

[165]  S. G. Atienza,et al.  Mapping QTLs controlling flowering date in Miscanthus sinensis Anderss. , 2003 .

[166]  Oene Dolstra,et al.  Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content , 2003 .

[167]  O. Dolstra,et al.  Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter , 2003, Theoretical and Applied Genetics.

[168]  K. Vogel,et al.  Incompatibility Systems in Switchgrass , 2002 .

[169]  L. Smart,et al.  Collection and storage of pollen from Salix (Salicaceae). , 2002, American journal of botany.

[170]  Wim Turkenburg,et al.  Green Energy or Organic Food?: A Life‐Cycle Assessment Comparing Two Uses of Set‐Aside Land , 2001 .

[171]  G. Tuskan,et al.  Short-rotation woody crop systems, atmospheric carbon dioxide and carbon management: a U.S. case study. , 2001 .

[172]  Trevor R. Hodkinson,et al.  Nomenclature of Miscanthus x giganteus (Poaceae) , 2001 .

[173]  S. Maldonado,et al.  Storage behaviour of Salix alba and Salix matsudana seeds , 2000 .

[174]  M. Smulders,et al.  Development and characterization of microsatellite markers in black poplar (Populus nigra L.) , 2000, Theoretical and Applied Genetics.

[175]  Q. Xi,et al.  Investigation on the distribution and potential of giant grasses in China: Triarrhena, Miscanthus, Arundo, Phragmites and Neyraudia. , 2000 .

[176]  E. Brummer,et al.  Capturing heterosis in forage crop cultivar development , 1999 .

[177]  Naturschutz und Reaktorsicherheit Umweltgesetzbuch (UGB-KomE) : Entwurf der Unabhängigen Sachverständigenkommission zum Umweltgesetzbuch beim Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit , 1998 .

[178]  K. Lindegaard,et al.  Breeding willows for biomass. , 1997 .

[179]  B. Ilstedt Genetics and performance of Belgian poplar clones tested in Sweden , 1996 .

[180]  H. Weisgerber Poplar breeding for the purpose of biomass production in short rotation periods in Germany: problems and first findings. , 1993 .

[181]  J. Greef,et al.  Syntaxonomy of Miscanthus x giganteus Greef et Deu , 1993 .

[182]  K. Stott Willows in the service of man , 1992 .

[183]  C. Johnson Progress and Prospects , 1991 .

[184]  A. Mosseler HYBRID PERFORMANCE AND SPECIES CROSSABILITY RELATIONSHIPS IN WILLOWS (SALIX) , 1990 .

[185]  M. D. Block,et al.  Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones. , 1990 .

[186]  M. De Block Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones. , 1990, Plant physiology.

[187]  W. W. Schwabe Evidence for a Flowering Inhibitor Produced in Long Days in Kalanchoe blossfeldiana , 1956 .