New Observational H(z) Data from Full-spectrum Fitting of Cosmic Chronometers in the LEGA-C Survey

In this work, we perform a full-spectrum fitting of 350 massive and passive galaxies selected as cosmic chronometers from the LEGA-C ESO public survey to derive their stellar ages, metallicities, and star formation histories. We extensively test our results by assessing their dependence on the possible contribution of dust, calibration of noise and signal, and use of photometric data in addition to spectral information; we also identify indicators of the correct convergence of the results, including the shape of the posterior distributions, the analysis of specific spectral features, and the correct reproduction of the observed spectrum. We derive a clear age–redshift trend compatible with the aging in a standard cosmological model showing a clear downsizing pattern, with more massive galaxies being formed at higher redshift (z f ∼ 2.5) with respect to less massive ones (z f ∼ 2). From these data, we measure the differential aging of this population of cosmic chronometers to derive a new measurement of the Hubble parameter, obtaining H(z=0.8)=113.1±15.1(stat.)−11.3+29.1(syst.) . This analysis allows us to compare for the first time the differential ages of cosmic chronometers measured on the same sample with two completely different methods, the full-spectrum fit (this work) and the analysis of Lick indices, known to correlate with the age and metallicity of the stellar populations. Albeit an understood offset in the absolute ages, the differential ages have proven to be extremely compatible between the two methods, despite the very different data, assumptions, and models considered, demonstrating the robustness of the method.

[1]  Ryan E. Keeley,et al.  Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies , 2022, Journal of High Energy Astrophysics.

[2]  A. Cimatti,et al.  Unveiling the Universe with emerging cosmological probes , 2022, Living Reviews in Relativity.

[3]  G. Zamorani,et al.  COSMOS2020: A Panchromatic View of the Universe to z ∼ 10 from Two Complementary Catalogs , 2021, The Astrophysical Journal Supplement Series.

[4]  A. Cimatti,et al.  Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z ∼ 0.7 , 2021, The Astrophysical Journal Letters.

[5]  B. Garilli,et al.  The Stellar Metallicities of Massive Quiescent Galaxies at 1.0 < z < 1.3 from KMOS + VANDELS , 2021, The Astrophysical Journal.

[6]  A. Cimatti,et al.  Toward a Better Understanding of Cosmic Chronometers: Stellar Population Properties of Passive Galaxies at Intermediate Redshift , 2021, The Astrophysical Journal.

[7]  Benjamin D. Johnson,et al.  Fast, Slow, Early, Late: Quenching Massive Galaxies at z ∼ 0.8 , 2021, The Astrophysical Journal.

[8]  M. Franx,et al.  Elemental Abundances and Ages of z ∼ 0.7 Quiescent Galaxies on the Mass–Size Plane: Implication for Chemical Enrichment and Star Formation Quenching , 2021, 2105.12750.

[9]  A. Melchiorri,et al.  In the realm of the Hubble tension—a review of solutions , 2021, Classical and Quantum Gravity.

[10]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[11]  Fayin Wang,et al.  A New Method to Measure Hubble Parameter H(z) Using Fast Radio Bursts , 2020, The Astrophysical Journal.

[12]  A. Cimatti,et al.  Setting the Stage for Cosmic Chronometers. II. Impact of Stellar Population Synthesis Models Systematics and Full Covariance Matrix , 2020, The Astrophysical Journal.

[13]  D. A. García-Hernández,et al.  The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2019, The Astrophysical Journal Supplement Series.

[14]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[15]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[16]  A. Riess The expansion of the Universe is faster than expected , 2020, 2001.03624.

[17]  T. Davis An expanding controversy , 2019, Science.

[18]  M. Fishbach,et al.  A Future Percent-level Measurement of the Hubble Expansion at Redshift 0.8 with Advanced LIGO , 2019, The Astrophysical Journal.

[19]  L. Verde,et al.  Tensions between the early and late Universe , 2019, Nature Astronomy.

[20]  E. Bell,et al.  Rejuvenation in z ∼ 0.8 Quiescent Galaxies in LEGA-C , 2019, The Astrophysical Journal.

[21]  Benjamin D. Johnson,et al.  The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3 , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  J. Trump,et al.  CLEAR. I. Ages and Metallicities of Quiescent Galaxies at 1.0 < z < 1.8 Derived from Deep Hubble Space Telescope Grism Data , 2018, The Astrophysical Journal.

[23]  Benjamin D. Johnson,et al.  How to Measure Galaxy Star Formation Histories. II. Nonparametric Models , 2018, The Astrophysical Journal.

[24]  S. Belli,et al.  MOSFIRE Spectroscopy of Quiescent Galaxies at 1.5 < z < 2.5. II. Star Formation Histories and Galaxy Quenching , 2018, The Astrophysical Journal.

[25]  A. V. D. Wel,et al.  The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 2: Dynamical and Stellar Population Properties of z ≲ 1 Galaxies in the COSMOS Field , 2018, The Astrophysical Journal Supplement Series.

[26]  H. Rix,et al.  Star Formation Histories of z ∼ 1 Galaxies in LEGA-C , 2018, The Astrophysical Journal.

[27]  A. Cimatti,et al.  Setting the Stage for Cosmic Chronometers. I. Assessing the Impact of Young Stellar Populations on Hubble Parameter Measurements , 2018, The Astrophysical Journal.

[28]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[29]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[30]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[31]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[32]  R. Nichol,et al.  Age-dating luminous red galaxies observed with the Southern African Large Telescope , 2016, 1702.00418.

[33]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[34]  Daniel Thomas,et al.  A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration , 2016, 1601.01701.

[35]  Michele Moresco Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2 , 2015, 1503.01116.

[36]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[37]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[38]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[39]  B. Garilli,et al.  Spot the difference: Impact of different selection criteria on observed properties of passive galaxies in zCOSMOS-20k sample , 2013, 1305.1308.

[40]  J. Dunlop,et al.  A PUBLIC Ks-SELECTED CATALOG IN THE COSMOS/UltraVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS, , 2013, 1303.4410.

[41]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[42]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[43]  Siqi Liu,et al.  Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven , 2012, 1207.4541.

[44]  A. Cimatti,et al.  New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z~1.75 , 2012, 1201.6658.

[45]  B. Garilli,et al.  Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers , 2012, 1201.3609.

[46]  Edward J. Wollack,et al.  OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS , 2011 .

[47]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[48]  A. Cimatti,et al.  Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers , 2010, 1010.0831.

[49]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[50]  Claudia Maraston,et al.  Flux-calibrated stellar population models of Lick absorption-line indices with variable element abundance ratios , 2010, 1010.4569.

[51]  Peking University,et al.  Constraints on the Dark Side of the Universe and Observational Hubble Parameter Data , 2010, 1010.1307.

[52]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[53]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[54]  L. Verde,et al.  Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements , 2009, 0907.3149.

[55]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[56]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[57]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[58]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[59]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[60]  L. Verde,et al.  Constraints on the Equation of State of Dark Energy and the Hubble Constant from Stellar Ages and the Cosmic Microwave Background , 2003, astro-ph/0302560.

[61]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[62]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[63]  A. Loeb,et al.  Constraining Cosmological Parameters Based on Relative Galaxy Ages , 2001, astro-ph/0106145.

[64]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[65]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[66]  D. Fabricant,et al.  Hubble Space Telescope Photometry and Keck Spectroscopy of the Rich Cluster MS 1054–03: Morphologies, Butcher-Oemler Effect, and the Color-Magnitude Relation at z = 0.83 , 2000, astro-ph/0002507.

[67]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[68]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[69]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[70]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[71]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[72]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[73]  J. J.,et al.  The Realm of the Nebulae , 1936, Nature.