Prospective of Semiconductor Memory Devices: from Memory System to Materials

The ever-increasing demand for higher-capacity digital memory shows no sign of declining. The conventional strategy for meeting such demand, i.e. shrinking of the memory cell size, will no longer be useful at some point in the future, owing to economic reasons and performance degradation. Nevertheless, performance of computing systems will keep improving for the next generation information technology. This indicates the necessity to consider a fundamentally disparate approach to enhance memory technology. Here, the current status of computer memory chips is reviewed and the pros and cons of the present technology are discussed from computing system, fabrication technology, and materials points of view. Based on this knowledge, the limitations of the present technologies are described, and the possible solutions suggested up to now are reassessed. Finally, a shift in the fundamental computational paradigm from von Neumann computing to other alternatives such as neuromorphic computing and material implication, is commented upon.

[1]  Young-Ho Lim,et al.  A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme , 1995 .

[2]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[3]  Johannes Schemmel,et al.  A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems , 2010, Biological Cybernetics.

[4]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[5]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[6]  Christoph Adelmann,et al.  Impact of different dopants on the switching properties of ferroelectric hafniumoxide , 2014 .

[7]  Ashok K. Sharma Introduction to Advanced Semiconductor Memories , 2003 .

[8]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[9]  Z. Ji,et al.  Realization of forming-free ZnO-based resistive switching memory by controlling film thickness , 2010 .

[10]  C. S. Hwang,et al.  Thin HfxZr1‐xO2 Films: A New Lead‐Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability , 2014 .

[11]  Eric Garfunkel,et al.  Band offsets of ultrathin high- κ oxide films with Si , 2008 .

[12]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[13]  C. Hwang,et al.  Bipolar resistive switching behavior of an amorphous Ge₂Sb₂Te₅ thin films with a Te layer. , 2015, Nanoscale.

[14]  Jun Yeong Seok,et al.  Ionic bipolar resistive switching modes determined by the preceding unipolar resistive switching reset behavior in Pt/TiO2/Pt , 2013, Nanotechnology.

[15]  Yoichi Ando,et al.  Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ , 2007, Nature.

[16]  M. Kozicki,et al.  Quantized Conductance in $\hbox{Ag/GeS}_{2}/\hbox{W}$ Conductive-Bridge Memory Cells , 2012, IEEE Electron Device Letters.

[17]  Kate J. Norris,et al.  Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. , 2013, Nano letters.

[18]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[19]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[20]  Shigeki Sakai,et al.  Self-Aligned-Gate Metal/Ferroelectric/Insulator/Semiconductor Field-Effect Transistors with Long Memory Retention , 2005 .

[21]  Nevill Mott,et al.  Metal-Insulator Transition , 1968 .

[22]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[23]  Thomas Mikolajick,et al.  Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films , 2012 .

[24]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[25]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[26]  Siegfried Selberherr,et al.  Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory , 2013 .

[27]  T. W. Hickmott Potential Distribution and Negative Resistance in Thin Oxide Films , 1964 .

[28]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[29]  S. Murakami,et al.  Mirror-symmetric Magneto-optical Kerr Rotation using Visible Light in [(GeTe)2(Sb2Te3)1]n Topological Superlattices , 2014, Scientific Reports.

[30]  C. Hwang,et al.  Two-step reset in the resistance switching of the Al/TiOx/Cu structure. , 2013, ACS applied materials & interfaces.

[31]  J. Forrester Digital Information Storage in Three Dimensions Using Magnetic Cores , 1951 .

[32]  G. Rachmuth,et al.  A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations , 2006, IEEE transactions on neural systems and rehabilitation engineering.

[33]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[34]  Christoph Adelmann,et al.  Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[35]  J. S. Lee,et al.  Phase coexistence in the metal–insulator transition of a VO2 thin film , 2005 .

[36]  H. Meng,et al.  Materials with perpendicular magnetic anisotropy for magnetic random access memory , 2011 .

[37]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[38]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[39]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[40]  E. Rimini,et al.  Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements , 2004 .

[41]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[42]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[43]  Jean-Pierre Launay,et al.  Synthesis and Properties of Dinuclear Complexes with a Photochromic Bridge: An Intervalence Electron Transfer Switching “On” and “Off” , 2000 .

[44]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[45]  R. Ahuja,et al.  Topological insulating in GeTe/Sb2Te3 phase-change superlattice. , 2012, Physical review letters.

[46]  Xiaoqing Pan,et al.  Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures , 2011, 1103.4419.

[47]  Effect of O-implantation on the structure and resistance of Ge2Sb2Te5 film , 2005 .

[48]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[49]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[50]  M. Kozicki,et al.  Silver incorporation in Ge-Se glasses used in programmable metallization cell devices , 2002 .

[51]  C. Mead,et al.  Neuromorphic analogue VLSI. , 1995, Annual review of neuroscience.

[52]  J. Welser,et al.  Electric-field penetration into metals: consequences for high-dielectric-constant capacitors , 1999 .

[53]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[54]  Qijie Wang,et al.  Temperature dependence of current-voltage characteristics of Ag–La0.7Ca0.3MnO3–Pt heterostructures , 2006 .

[55]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[56]  David H. Cobden,et al.  Measurement of a solid-state triple point at the metal–insulator transition in VO2 , 2013, Nature.

[57]  Norbert Kaiser,et al.  A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition , 2002 .

[58]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[59]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[60]  Uwe Schröder,et al.  Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films , 2012 .

[61]  Bruce M. Clemens,et al.  Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films , 1999 .

[62]  Byung Joon Choi,et al.  Conformal Formation of (GeTe2)(1–x)(Sb2Te3)x Layers by Atomic Layer Deposition for Nanoscale Phase Change Memories , 2012 .

[63]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[64]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[65]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[66]  C. Hwang,et al.  Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes , 2014 .

[67]  Sang Woon Lee,et al.  Capacitors with an Equivalent Oxide Thickness of <0.5 nm for Nanoscale Electronic Semiconductor Memory , 2010 .

[68]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[69]  P Jost,et al.  Disorder-induced localization in crystalline phase-change materials. , 2011, Nature materials.

[70]  Omid Kavehei,et al.  Multiprotocol-induced plasticity in artificial synapses. , 2014, Nanoscale.

[71]  J. Daughton,et al.  70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference Layers , 2004, IEEE Transactions on Magnetics.

[72]  L. Berger Generation of dc voltages by a magnetic multilayer undergoing ferromagnetic resonance , 1999 .

[73]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[74]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[75]  S. Cheong,et al.  Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites , 1999, Nature.

[76]  Lothar Frey,et al.  Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .

[77]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[78]  Qi Liu,et al.  Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM , 2012, Advanced materials.

[79]  A. Aspect,et al.  Anderson localization of ultracold atoms , 2009 .

[80]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[81]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[82]  Sang-jun Choi,et al.  In Situ Observation of Voltage‐Induced Multilevel Resistive Switching in Solid Electrolyte Memory , 2011, Advanced materials.

[83]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .

[84]  Kinam Kim,et al.  Integration technology for ferroelectric memory devices , 2003, Microelectron. Reliab..

[85]  J. K. Dewhurst,et al.  Relative stability of ZrO 2 and HfO 2 structural phases , 1999 .

[86]  Yannick Bornat,et al.  PAX: A mixed hardware/software simulation platform for spiking neural networks , 2010, Neural Networks.

[87]  Qi Liu,et al.  Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. , 2010, ACS nano.

[88]  Yuchao Yang,et al.  Nanoscale resistive switching devices: mechanisms and modeling. , 2013, Nanoscale.

[89]  Franz Effenberger,et al.  Optical ON/OFF Switching of Intramolecular Photoinduced Charge Separation in a Donor−Bridge−Acceptor System Containing Dithienylethene , 2000 .

[90]  Catherine Dubourdieu,et al.  Switching of ferroelectric polarization in epitaxial BaTiO₃ films on silicon without a conducting bottom electrode. , 2013, Nature nanotechnology.

[91]  Run-Wei Li,et al.  Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches , 2010, Nanotechnology.

[92]  D. Adler,et al.  Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors , 1976 .

[93]  Hysteretic resistance concepts in ferroelectric thin films , 2006 .

[94]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[95]  Rainer Waser,et al.  Resistive switching in metal–ferroelectric–metal junctions , 2003 .

[96]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[97]  C. Hwang,et al.  Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films , 2015 .

[98]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[99]  Byung Joon Choi,et al.  A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure , 2011, Nanotechnology.

[100]  Lothar Frey,et al.  Ferroelectricity in yttrium-doped hafnium oxide , 2011 .

[101]  C. Jin,et al.  Plumbing carbon nanotubes. , 2008, Nature nanotechnology.

[102]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[103]  Byung Joon Choi,et al.  Influence of the Kinetic Adsorption Process on the Atomic Layer Deposition Process of (GeTe2)(1–x)(Sb2Te3)x Layers Using Ge4+–Alkoxide Precursors , 2014 .

[104]  Piotr Dudek,et al.  Compact silicon neuron circuit with spiking and bursting behaviour , 2008, Neural Networks.

[105]  John Gantz,et al.  The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East , 2012 .

[106]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[107]  C. Hwang,et al.  Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .

[108]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[109]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[110]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[111]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[112]  Jong-Ho Lee,et al.  Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory , 2012 .

[113]  R. Greene,et al.  Direct Observation of Percolation in a Manganite Thin Film , 2002, Science.

[114]  J. Sun,et al.  Trap state controlled bipolar resistive switching effect and electronic transport in LaAlO3/Nb:SrTiO3 heterostructures , 2013 .

[115]  I-Wei Chen,et al.  A size-dependent nanoscale metal-insulator transition in random materials. , 2011, Nature nanotechnology.

[116]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[117]  Jun Yeong Seok,et al.  Highly Uniform, Electroforming‐Free, and Self‐Rectifying Resistive Memory in the Pt/Ta2O5/HfO2‐x/TiN Structure , 2014 .

[118]  Doo Seok Jeong,et al.  A Review of Three‐Dimensional Resistive Switching Cross‐Bar Array Memories from the Integration and Materials Property Points of View , 2014 .

[119]  J. Yang,et al.  Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High‐Performance Memristor , 2011, Advanced materials.

[120]  Uri C. Weiser,et al.  Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[121]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[122]  C. Hwang,et al.  The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity , 2014 .

[123]  Bernard Rodmacq,et al.  Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: A very accurate control of the oxidation of tunnel barriers , 2002 .

[124]  Jean Véronis,et al.  Parallel Text Processing , 2000 .

[125]  Stephan Menzel,et al.  Simulation and comparison of two sequential logic-in-memory approaches using a dynamic electrochemical metallization cell model , 2014, Microelectron. J..

[126]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[127]  B. Kooi,et al.  Nanoscale Electrolytic Switching in Phase‐Change Chalcogenide Films , 2007 .

[128]  Yoshinori Tokura,et al.  Correlated-electron physics in transition-metal oxides , 2003 .

[129]  T. Schroeder,et al.  Hard x-ray photoelectron spectroscopy study of the electroforming in Ti/HfO2-based resistive switching structures , 2012 .

[130]  Rainer Waser,et al.  Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes , 2014 .

[131]  J C Grossman,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[132]  D. Jeong,et al.  Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions , 2014, Nature Communications.

[133]  Fei Cao,et al.  Wake-up effects in Si-doped hafnium oxide ferroelectric thin films , 2013 .

[134]  Kinam Kim,et al.  Programming Characteristics of Phase Change Random Access Memory Using Phase Change Simulations , 2005 .

[135]  Jussi H. Poikonen,et al.  A cellular computing architecture for parallel memristive stateful logic , 2014, Microelectron. J..

[136]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[137]  Alvaro Fernandez-Acebes,et al.  Optical Switching and Fluorescence Modulation Properties of Photochromic Metal Complexes Derived from Dithienylethene Ligands , 1999 .

[138]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[139]  C. Hwang,et al.  Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes , 2014 .

[140]  S. Desgreniers,et al.  High-density ZrO 2 and HfO 2 : Crystalline structures and equations of state , 1999 .

[141]  A. Kilcoyne,et al.  Characterization of electroforming-free titanium dioxide memristors , 2013, Beilstein journal of nanotechnology.

[142]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[143]  John Casimir Slonczewski,et al.  Excitation of spin waves by an electric current , 1999 .

[144]  Cheolkyu Kim,et al.  Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices , 2009 .

[145]  Cheol Seong Hwang,et al.  A Resistive Memory in Semiconducting BiFeO3 Thin‐Film Capacitors , 2011, Advanced materials.

[146]  C. Hwang,et al.  Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes , 2013 .

[147]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[148]  M. Ritala,et al.  Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium. , 2009, Journal of the American Chemical Society.

[149]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[150]  Y. Tomioka,et al.  Photoinduced Insulator-to-Metal Transition in a Perovskite Manganite , 1997 .

[151]  Lih-Juann Chen,et al.  Dynamic evolution of conducting nanofilament in resistive switching memories. , 2013, Nano letters.

[152]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[153]  Thomas Mikolajick,et al.  Phase transitions in ferroelectric silicon doped hafnium oxide , 2011 .

[154]  Yeong-Taek Lee,et al.  A dual-mode NAND flash memory: 1-Gb multilevel and high-performance 512-Mb single-level modes , 2001 .

[155]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[156]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[157]  S. Ikeda,et al.  Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier , 2007 .

[158]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[159]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[160]  T. Mikolajick,et al.  Reliability Characteristics of Ferroelectric $ \hbox{Si:HfO}_{2}$ Thin Films for Memory Applications , 2013, IEEE Transactions on Device and Materials Reliability.

[161]  Hosang Lee,et al.  Large Resistive Switching in Ferroelectric BiFeO3 Nano‐Island Based Switchable Diodes , 2013, Advanced materials.

[162]  Gurney,et al.  Giant magnetoresistive in soft ferromagnetic multilayers. , 1991, Physical review. B, Condensed matter.

[163]  Sayeef Salahuddin,et al.  Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. , 2014, Nano letters.

[164]  Xiangkang Meng,et al.  Field-induced resistive switching based on space-charge-limited current , 2007 .

[165]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[166]  Thomas Mikolajick,et al.  Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties , 2012 .

[167]  C. Hwang,et al.  Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior , 2014 .

[168]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[169]  M. Irie,et al.  Synthesis of fluorescent diarylethenes having a 2,4,5-triphenylimidazole chromophore. , 2001, The Journal of organic chemistry.

[170]  Parthasarathy Ranganathan,et al.  From Microprocessors to Nanostores: Rethinking Data-Centric Systems , 2011, Computer.

[171]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[172]  Andrew S. Cassidy,et al.  Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization , 2013, Neural Networks.

[173]  André van Schaik,et al.  Stochastic Electronics: A Neuro-Inspired Design Paradigm for Integrated Circuits , 2014, Proceedings of the IEEE.

[174]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[175]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[176]  Qiang Zhao,et al.  Polymer‐Based Resistive Memory Materials and Devices , 2014, Advanced materials.

[177]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[178]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[179]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[180]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[181]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[182]  Hangbing Lv,et al.  Thermoelectric Seebeck effect in oxide-based resistive switching memory , 2014, Nature Communications.

[183]  Yun Hee Jang,et al.  Observation of molecular orbital gating , 2009, Nature.

[184]  L. Chen,et al.  Comprehensive study of the resistance switching in SrTiO3 and Nb-doped SrTiO3 , 2011 .

[185]  M. Poulter,et al.  Physics on Wikipedia , 2011 .

[186]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[187]  Wolf,et al.  Ferroelectric Schottky diode. , 1994, Physical review letters.

[188]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[189]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[190]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[191]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[192]  A. O'Neill,et al.  Experimental observation of negative capacitance in ferroelectrics at room temperature. , 2014, Nano letters.

[193]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[194]  T. W. Hickmott Electroluminescence, Bistable Switching, and Dielectric Breakdown of Nb2O5 Diodes , 1969 .

[195]  Jacob L. Jones,et al.  Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes , 2014 .

[196]  Yiran Chen,et al.  Memristor Crossbar-Based Neuromorphic Computing System: A Case Study , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[197]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[198]  Jie Feng,et al.  Effects of Si Doping on Phase Transition of Ge2Sb2Te5 Films by in situ Resistance Measurements , 2006 .

[199]  Ralph,et al.  Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars , 1999, Physical review letters.

[200]  Tung-Sheng Chen,et al.  SONOS device with tapered bandgap nitride layer , 2005 .

[201]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[202]  T. Mikolajick,et al.  Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films , 2013 .

[203]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[204]  Adam Z. Stieg,et al.  Neuromorphic Atomic Switch Networks , 2012, PloS one.

[205]  R. Waser,et al.  Quantum conductance and switching kinetics of AgI-based microcrossbar cells , 2012, Nanotechnology.

[206]  J. Bain,et al.  In Situ Biasing TEM Characterization of Resistive Switching Phenomena in TiO2-based RRAM , 2014 .

[207]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[208]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .